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Résumé / Abstract
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1 Introduction

The dynamics of redistributive taxation has received a great deal of interest

among theorists. Quite often, the government is modelled as a Stackelberg

leader that announces a time path of tax rates, and other economic agents

such as workers and capitalists are modelled as followers that maximize their

intertemporal utility, taking the announced time path of tax rates as given.

One criticism that has been raised against this approach is that the gov-

ernment's solution is generally time-inconsistent. This criticism has turned

out to be somewhat exaggerated, because recently it has been discovered

that, depending on the speci�c structure of the model under consideration,

an open-loop Stackelberg equilibrium may have the desired time-consistency

property1. Another criticism of some analysis of open-loop Stackelberg redis-

tributive taxation game is that the stability of steady-state equilibria is often

assumed. Kemp, Long, and Shimomura (1993) have shown that around a

steady state there may exist cycles, and cyclical redistributive taxation may

be optimal.

In this paper, we raise a third point concerning the standard analysis

of models of redistributive taxation. It is about the assumption that at a

steady-state equilibrium of a redistributive game, all quantity variables and

all shadow prices are stationary. This assumption has led to the claim that

at a steady-state equilibrium, the tax rate on capital income must be zero,

regardless of the elasticity of intertemporal substitution (see, for example,

Judd (1985)). Our paper o�ers a counter-example which shows that (i) a

steady-state equilibrium (in quantities) exists while the shadow prices are

not stationary (we call this a \semi-stationary" state), (ii) at this steady-

state equilibrium, the tax rate on capital income is non-zero, and (iii) in

our example, there is no other steady-state equilibrium in quantities. Our

counter-example, valid for open economies as well as closed economies, is im-

portant because it indicates that the standard short-cut of setting all equa-

tions of motions to zero can lead to incorrect conclusion about optimal tax

in a steady state.

1See Xie (1997). The basic point in Xie's article is that a so-called \transversality

condition" at the initial time of the control problem of the Stackelberg leader may turn

out not to be a necessary condition, as was commonly claimed. For a more detailed

discussion of this point, see Dockner, J�rgensen, Long, and Sorger (1999, Chapter 5), who

also provide examples of the non-applicability of such \transversality conditions" in �nite

horizon and in�nite horizon open-loop Stackelberg games.
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The plan of our paper is as follows. In Section 2, we consider a model of

redistributive taxation in a closed economy, and prove our basic results. In

Section 3, we show that our arguments apply also to open economies. An

alternative formulation of the redistributive game is presented in Section 4,

where it is shown that the same results are obtained. Section 5 provides

an intuitive explanation of our results. Some concluding remarks are o�ered

in Section 6. The appendices settle some technical issues. In particular,

Appendix C shows that our results are valid also when the model is set in

discrete time.

2 Redistributive Taxation in a Closed Econ-

omy

We consider a model introduced by Judd (1985) in which there exists a gov-

ernment, and two types of in�nitely-lived individuals, called workers and

capitalists respectively. Each worker supplies one unit of labour, indepen-

dently of the wage rate. They neither borrow nor lend: they consume all

their current income. Capitalists do not work. They own capital, which they

lend to competitive �rms at the market interest rate r(t). There is no de-

preciation. Firms use capital and labour to produce a �nal good which can

be either consumed or invested. Constant returns to scale is assumed, and

�rms earn no pro�t. For notational simplicity, the number of each type of

individual is set at unity, without loss of generality.

The gross income earned by the representative capitalist is r(t)k(t) where

k(t) � 0 is his stock of capital. His net income is [1� �(t)]r(t)k(t) where � (t)

is the tax rate on capital income, and 1 � �(t) � 0. Let c(t) denote his rate

of consumption, and let z(t) = [1� � (t)]r(t). We assume that z(t) � 0. His

stock of capital accumulates according to the equation

_k(t) = z(t)k(t) � c(t) (1)

where _k(t) is positive [respectively, negative] if consumption is less than [re-

spectively, exceeds] net income. The capitalist has the utility function u(c)

which is increasing and strictly concave. We also assume that limc!0 u
0(c) =

1 and limc!1 u
0(0) = 0. These assumptions ensure that it is never optimal

to set c = 0. The capitalist takes the time path of r(t) and �(t) as given,

and his optimization problem is to choose a time path c(t) to maximize the
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integral of his stream of discounted utilityZ
1

0

e��tu(c(t))dt

subject to (1) and k(0) = k0 > 0 (given), where � > 0 is the rate at which

utility is discounted. It is also understood that if k(t) = 0 then c(t) = 0. We

impose either the constraint that, for all t

k(t) � 0 (2)

or the constraint that

lim
t!1

k(t) exp

�Z t

t0

�z(� )d�

�
= 0: (3)

The capitailist thus faces an optimal control problem2. Under our assumption

about u(c), it is well known that if � (t) < 1 and r(t) > 0 then k(t) will always

be positive along the optimal path.

Before solving the above problem, it is useful to point out that instead of

(1) and (2) we may write the following intertemporal budget constraintZ
1

t0

c(t) exp

�Z t

t0

�z(� )d�

�
dt = k(t0) (4)

where t0 = 0, but clearly t0 can be any point of time. Note that we can

integrate (1) to get

lim
t!1

k(t) exp

�Z t

t0

�z(� )d�

�
� k(t0) = � lim

t!1

Z t

t0

c(s) exp

�Z s

t0

�z(� )d�

�
ds (5)

so (1) and (3) imply (4). Conversely, one can show that (4) implies (1) and

(3).

2.1 The capitalist's consumption decision

The Hamiltonian for the capitalist's optimization problem is

Hc = u(c) +  [zk � c] (6)

2See, for example, Leonard and Long (1992).
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From this we obtain the necessary conditions

@Hc

@c
= u0(c)�  = 0 (7)

_ = � �
@Hc

@k
=  (�� z) (8)

_k =
@Hc

@ 
= zk � c (9)

and the transversality condition is

lim
t!1

e��tu0(c(t))k(t) = 0: (10)

Di�erentiating (7) with respect to t we get

u00(c) _c = _ =  (�� z) = u0(c)(�� z)

Therefore conditions (7) and (8) can be combined into a single condition

_c =
c

�(c)
(z � �) (11)

where by de�nition �(c) = �u00(c)c=u0(c) > 0 is the elasticity of marginal

utility. The intertemporal elasticity of substitution is de�ned as 1=�(c). In

what follows, we assume that �(c) is a constant, denoted by �.

Remark 1:

Under the assumption that � is a constant, we can integrate (11) to get

c(t) = c(t0) exp

�
��1

Z t

t0

(z(� )� �)d�

�
(12)

Substituting (12) into (4), we get

c(t0) =
k(t0)R

1

t0
expf

R �
t0
[z(s)(��1 � 1)� (�=�)]dsgd�

(13)

Thus current consumption depends on future tax rates if � 6= 1. However, if

� = 1, which is the case of a logarithmic utility function, then (13) becomes

c(t0) = �k(t0): (14)
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2.2 The government's optimization problem

Under competitive conditions and given the assumption that there is no

depreciation, the interest rate is the same as the marginal product of capital,

f 0(k). The wage rate is w(t) = f(k)� r(t)k(t).

The government's role is assumed to be purely redistributive: the capital

income tax revenue �(t)r(t)k(t) is given to the representative worker, who

consumes both �(t)r(t)k(t) and his wage income w(t). Since

� (t)r(r)k(t) = r(t)k(t)� z(t)k(t) = [f(k(t))� w(t)]� z(t)k(t)

the consumption of the representative worker is

cw(t) = f(k(t))� z(t)k(t): (15)

The utility of the worker is v(cw) where v(:) is strictly concave and increasing.

The government takes the pair of di�erential equations (9) and (11), to-

gether with the initial condition k(0) = k0 and the transversality condition

(10), as representing the representative capitalist's \reaction function" to

the government's announced time path z(t). The government's optimization

problem consists of choosing a time path z(t) to maximize the integral of

discounted 
ow of the weighted sum of utility 
v(cw(t)) + u(c(t)) :

max

Z
1

0

e��tf
v(cw(t)) + u(c(t))gdt (16)

subject to (15) and
_k(t) = z(t)k(t) � c(t) (17)

_c(t) =
c(t)

�
fz(t)� �g (18)

k(0) = k0 (19)

lim
t!1

e��tu0(c(t))k(t) = 0 (20)

where 
 > 0 is the weight given to the utility of the worker.

Notice that in this formulation, the capital stock is not the only state

variable: we treat c as a state variable, too. (This is the standard approach,

5



see Judd (1985), Kemp, Long and Shimomura (1993), among others.) The

Hamiltonian for this problem is

H = 
v(f(k)� zk) + u(c) + p[zk � c] + qc

"
z � �

�

#
(21)

and the necessary conditions are

@H

@z
= �
kv0 + pk + qc=� = 0 (22)

_p = �p�
@H

@k
= �p� zp� 
(f 0 � z)v0 (23)

_q = �q �
@H

@c
= �q � q

"
z � �

�

#
� u0(c) + p (24)

together with (17), (18), (19), (20), and the transversality conditions

lim
t!1

e��tpk = lim
t!1

e��tqc = 0 (25)

2.3 The optimal capital income tax rate

We want to �nd the optimal capital income tax rate in a steady state, de�ned

as the situation where the state variables remain constant for ever, i.e. _c =
_k = 0 for all t. Suppose we follows the standard procedure of �nding a steady

state by equating to zero the time derivatives of all the state variables and all

the associated shadow prices. The steady state condition _c = 0 implies z = �

in the steady state. Using this result to simplify (23) and then equating _p to

zero gives us f 0 = z. But f 0 = r, therefore z = r, implying that in a steady

state where the time derivatives of all shadow prices are equated to zero,

the tax rate on capital income is zero, and the steady state capital stock k�

satis�es the modi�ed golden rule property

f 0(k�) = �: (26)

Since _k = 0, c� = �k�. Substitute this into (22) to get

k�[p� + �(q�=�)� 
v0(f(k�)� �k�)] = 0 (27)

Since we have set _p = 0, equation (27) holds at a steady state only if _q = 0,

too.This in turn implies, via (24), that

�q� + p� = u0(�k�) (28)
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Since k� has been determined by (26), the two equations (27) and (28) deter-

mine the pair (q�; p�). It can be easily veri�ed that q� satis�es the following

condition:

u0(�k�)� 
v0(f(k�)� �k�) = �q�
"
1

�
� 1

#
(29)

This indicates that the gap between the two weighted marginal utilities is

generally non-zero.

It is tempting to conclude that in this model, at the optimal steady state,

the optimal tax rate on capital income is zero. However, such a conclusion

seems to be too hasty. Let us consider the case where the utility function

u(:) is logarithmic: u(c) = ln c. In this case, � = 1, and u0(�k�) = 1=(�k�);

hence we can substitute (28) into (27) to get

k�f[1=(�k�)]� 
v0(f(k�)� �k�)g = 0 (30)

In general it is not possible for k� to satisfy both this equation and equation

(26). It follows that if u(c) = ln c then a steady state where all shadow prices

are stationary does not exist (generically). This is not a negative result,

however, for, as will be shown below, there exists a steady state (k̂; ĉ) where

all state variables are stationary while the shadow prices are not stationary.

At this steady state, however, the capital stock k̂ does not satisfy the modi�ed

golden rule (26) and the optimal tax on capital income is non-zero.

First, setting _c = 0, we get

z = � (31)

Next, setting _k = 0, we get

ĉ = �k̂ (32)

Substituting these results into (22), with � = 1, we get

k̂[p(t) + �q(t)� 
v0(f(k̂)� �k̂)] = 0 (33)

Since we seek a k̂ which is positive and stationary, (33) implies

p(t) + �q(t) = 
v0[f(k̂)� �k̂] (34)

and it follows that _p(t)+ � _q(t) = 0. Multipling equation (24) by �, adding it

to equation (23), and equating the result to zero, we get

_p(t) + � _q(t) = 
[2�� f 0(k̂)]v0(f(k̂)� �k̂)� (1=k̂) = 0 (35)
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This equation determines k̂.

To summarize, when the utility function u(c) is logarithmic, there exists

a steady state pair (k̂; ĉ) with non-stationary shadow prices (p(t); q(t)) where

k̂ is determined by


[2�� f 0(k̂)]v0[f(k̂)� �k̂]� (1=k̂) = 0 (36)

and ĉ = �k̂, while p(t) + �q(t) is given by (34). (If the system begins at

(k̂; ĉ) then it will remain there, while the shadow prices will be changing

continuously, with p(t) = p(0) � 
[f 0(k̂) � �]v0[f(k̂) � �k̂]t, where p(0) is

arbitrary.) Note that equation (36) can be written as:

u0(�k̂)� 
v0[f(k̂)� �k̂] =
1

�

h
�� f 0(k̂)

i

v0[f(k̂)� �k̂] (37)

This shows that the gap between the two weighted marginal utilities is gen-

erally non-zero. It is positive if and only if f 0(k̂) < �.

When the utility function u(c) is logarithmic, the optimal tax on capital

in the steady state is

�̂ = f 0(k̂)� z = f 0(k̂)� � = ��
1


k̂v0[f(k̂)� �k̂]
(38)

which can be positive or negative. From (38) and (37), �̂ is negative if and

only if u0(�k̂) exceeds 
v0[f(k̂)� �k̂].

3 Redistributive Taxation in an Open Econ-

omy

In this section, we seek to show that the basic results of the preceding section

also applies to open economies. To do this in the simplest way, we consider

a small open economy producing two goods: good 1, which is an investment

good, and good 2, which is a consumption good. Their outputs are denoted

by X1 and X2 respectively. The production functions are

Xi = Fi(Ki; Li); i = 1; 2

where each Fi(Ki; Li) is homogenous of degree one, strictly quasi-concave,

and increasing in each argument. To �x ideas, assume that good 1 is labor
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intensive, though this is not essential for our argument. Let � denote the

(time-independent) price of the consumption good in terms of the investment

good, which serves as the numeraire. The small open economy takes � as

exogenously given. Perfect competition is assumed to prevail in the product

markets and factor markets.

It is well known that the above assumptions allow us to obtain the GNP

function

y = g(k; �)

where y is aggregate output in terms of the numeraire good, and k(t) is the

economy's stock of capital per worker. Let us list below the properties of the

function g(k; �). Given �, there exist two positive numbers kA(�) and kB(�);

where kA(�) < kB(�); such that (i) if k � kA(�), then the economy specializes

in the production of good 1, and g(k; �) = f1(k); (ii) if k � kB(�), then the

economy specializes in the production of good 2, and g(k; �) = �f2(k); (iii) if

kA(�) < k < kB(�), then the economy produces both goods, and aggregate

output is

g(k; �) = f1(kA(�)) + (k � kA(�))f
0

1
(kA(�))

Over the range of diversi�cation described in (iii), the marginal product of

capital is constant, and given by:

@g

@k
= f 0

1
(kA(�)):

In what follows, since � is assumed to be constant, we will suppress the

dependence of y on � and write f(k) as a short-hand expression for g(k; �):

Note that the function f(k) is continuous, increasing, and concave, with strict

concavity holding for k � kA(�), and for k � kB(�). For kA(�) < k < kB(�),

the function f(k) is linear.

It is clear that the model and the analysis in section 2 can be adapted to

our open economy. The minor changes that must be made are listed below.

1. The accumulation equation (1) becomes

_k(t) = [1� � (t)]r(t)k(t)� �c(t) (39)

2. The Hamiltonian (6) becomes

Hc = u(c) +  [zk � �c] (40)
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3. The consumption of the representative worker, instead of being (15), is

now

cw(t) = [f(k(t))� z(t)k(t)]��1: (41)

It follows that the equations (16) to (38) must be modi�ed, but only with

minimal changes. The essential results of section 2 carry over to the small

open economy.

4 An Alternative Approach

In the preceding section we showed that when the capitalist's utility function

is u(c) = ln c, then a steady state with stationary shadow prices (in addition

to stationary state variables) does not exist (generically), and that there

exists a steady state with non-stationary shadow prices. At this steady state,

the optimal tax on capital is non-zero. In deriving those conclusions, we have

made used of the standard formulation of the government's optimization

problem: we have introduced c(t) as an additional state variable. In the

present section, we show that the same results can be obtained using an

alternative formulation.This approach consists of representing the capitalist's

optimal consumption rule in a close form, which is possible when u(c) = ln c.

Instead of representing the capitalist's optimal paths by the pair of dif-

ferential equations (9) and (11), we note that in the case � = 1 (i.e., utility

is logarithmic), using (3), we can represent these paths by the following pair

of equations:

c(t) = �k(t) (42)

and
_k(t) = z(t)k(t)� �k(t) (43)

(In fact, this was shown in Remark 1 of subsection 2.1. Note also that if we

di�erentiate (42) with respect to t, we get

_c(t) = � _k(t) = �[z(t)k(t) � �k(t)] = �[z(t)k(t) � c(t)]

which is (11) with � = 1.)

The representation (42)-(43) highlights the fact that when � = 1, the

capitalist's current consumption c(t) depends only on his current capital

stock k(t); and is independent of current and future tax rates. His current

10



saving, z(t)k(t)� c(t), does depends on the current tax rate.This fact is only

implicit in the representation using (9) and (11).

Remark 2: If we do not use (3), we still can get the same result. With

� = 1, we get from ((9)),

z(t) = �+
_c(t)

c(t)

hence (11) yields
_k(t)

k(t)
= ��

_c(t)

c(t)
+
c(t)

k(t)

De�ne �(t) = k(t)=c(t). Then

_�(t)

�(t)
= ��

1

�(t)
(44)

This equation, and the condition

lim
t!�

�(t)e��t = 0 (45)

which is obtained from (10), give �(t) = � as the only solution that satis�es

(45).

Using (42)-(43), the optimization problem of the government can be re-

written as

max

Z
1

0

e��tf
v[f(k(t))� z(t)k(t)] + ln(�k(t))gdt

subject to (43) and k(0) = k0.

The Hamiltonian is

~H = 
v[f(k(t))� z(t)k(t)] + ln(�k(t)) +  [z(t)k(t)� �k(t)] (46)

and the �rst order conditions are (43)

@ ~H

@z
= �
kv0 +  k = 0 (47)

and

_ = � �
@ ~H

@k
= z �

1

k
� 
[f 0(k)� z]v0 (48)
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At a steady state with _k = _ = 0, we have

z = �

and

2�� f 0(k) =
1


kv0
(49)

Equation (49) is identical to (35). It follows that the steady state of this

problem is identical to that given by (35).

The approach taken in this section, while con�rming our results found in

the preceding section, has several advantages: (i) simplicity, (ii) su�ciency is

ensured because the maximized Hamiltonian is concave in the state variable3,

and (iii) it is transparent that the solution is time-consistent.

5 An Intuitive Explanation

While the main purpose of this paper is to show that, in some model formula-

tions, the unique steady state in quantities can be obtained only by allowing

shadow prices to be non-stationary, we feel that it may be useful to provide

some economic explanation. Why is it that, if the representative capitalist's

utility function is logarithmic (� = 1), the optimal tax on capital income in

the steady state is non-zero, while if their utility function has an elasticity

of marginal utility � 6= 1, the optimal tax is zero in the steady state?

The reason is that if � = 1 (i.e., if the representative capitalist has a

logarithmic utility function), then the income e�ect and the substitution

e�ect (on his current consumption) of a change in capital income tax cancel

each other out, and his optimal current consumption4 is simply �a(t) where

a(t) denotes the current level of his wealth (which, in our model, is the

same as his capital stock k(t)). This means that c(t) and k(t) cannot be

3See the Appendix.
4The Hamilton-Jacobi-Bellman equation for the capitalist's optimization problem is

�V (t; a)� Vt(t; a) = maxfln c+ Va(t; a)[z(t)a� c]g

and it can be veri�ed that the function

V (t; a) =

Z
1

t

�
e��(s�t)

Z s

t

[z(�)� �]d�

�
ds+

ln(�a)

�

satis�es the above functional equation and that the optimal control rule is c(t) = �a(t).
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separated by the only policy instrument that we assume is available to the

government, i.e,. the time path of the tax rate � (:). The government can use

this policy instrument to in
uence the time path k(:); but it cannot break the

relationship c(t) = �k(t). If � 6= 1, the situation is quite di�erent: there is no

such �xed, tax-independent relationship5. Thus, if � = 1, the government is

much handicapped, and it is no longer optimal to try to achieve the golden

rule f 0(k) = � in the long run.

The above explanation raises an interesting question: given � = 1, what

additional policy instrument would ensure that the optimal redistributive

taxation implies a zero tax rate on capital income in the steady state? The

key to the answer is that the nexus c = �k must be broken. And this can

be done if another asset is introduced into the economy, say government

bonds, denoted by b.(If b is negative, this means the government is the net

creditor.) For then, the representative capitalist's wealth, denoted by a, is

the sum of k and b, and his optimal consumption rule is c(t) = �[k(t)+ b(t)],

and it is no longer true that c(t) = �k(t): It is shown in the Appendix that

with this additional policy instrument, in the long run the optimal tax on

capital income is zero, and the golden rule f 0(k) = � is restored. (If b < 0

in the steady state, which is the case if 
 is su�ciently great, this means the

government in e�ect owns part of the capital stock, and the rental income

on that part is distributed to the workers).

6 Concluding Remarks

We have shown that it may be incorrect to characterize the properties of

a steady state by setting the motion of all shadow prices equal to zero.

Such a procedure can lead to policy recommendations that are unwarranted.

Using the standard representation of the representative capitalist's \reaction

function", we have also demonstrated that, in the case where the capitalist's

utility function is logarithmic, the optimal tax on capital income in a steady

state (with non-stationary shadow prices) is not zero, and there does not exist

a steady state with stationary shadow prices. The steady state we found can

5Remark 1 in subsection 2.1 implies that, for all t,

c(t) =
a(t)R

1

t
expf

R �

t
z(s)(1=� � 1)� �=�dsgd�

Thus current consumption depends on future tax rates if � 6= 1.

13



also be obtained using a closed form representation of the capitalist's optimal

consumption rule. Our results apply to both closed and open economies.

Another related issue in the taxation literature is whether government

policies, obtained by solving an optimal control problem, is time inconsis-

tent. Xie (1997) has shown that if the production function is linear in cap-

ital and the utility function is logarithmic, then the optimal tax path is

time-consistent. In our model, even though the production function is not

linear, the solution is also time-consistent as long as the utility function is

logarithmic.

APPENDIX

A.Proof that the maximized Hamiltonian in Section 3 is concave

in the state variable.

From (47) we get

f(k)� zk = v0�1( )

and hence zk = f(k)� v0�1( ). The maximized Hamiltonian is

Hm = ln(�k) + 
v[v0�1( )] +  [f(k)� v0�1( )]�  �k

which is concave in k.

B. Steady-state when government bonds exist

Let b(t) denote the stock of government bonds. A government bond is a

piece of paper that entitles its holder to earn the market interest rate r(t),

and to exchange it, whenever he wishes to, with a unit of capital. Initially

b(0) = 0. Let T (t) be the lump-sum transfer to workers. The government's

budget constraint is

_b(t) + � (t)[r(t)k(t) + r(t)b(t)] = r(t)b(t) + T (t)

(The right-hand side is the government disbursements, and the left-hand side

is the government receipts, which consist of tax revenue and proceeds from

the sale of additional bonds). Let a(t) � k(t) + b(t) be the total wealth of

the representative capitalist. He is indi�erent between using his savings to

acquire additional government bonds and using them to build up his stock

of capital goods. His optimal consumption strategy must solve

max
c

Z
1

0

e��t ln(c)dt
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subject to

_a(t) = z(t)a(t)� c(t); a(t) � 0,

and a(0) = a0 = k0. This yields the optimal consumption rule

c(t) = �a(t):

It follows that

_a(t) = [z(t)� �]a(t) = [z(t)� �][k(t) + b(t)]

The consumption of the representative worker is cw(t) = w(t) + T (t) =

f(k(t)) � r(t)k(t) + T (t): Using the government budget constraint, we can

write

cw(t) = f(k(t))� z(t)[k(t) + b(t)] + _b(t)

Let x(t) � _b(t) be a control variable for the government. Adopting the

approach used in section 4, we can write the optimization problem for the

government as

max

Z
1

0

e��tf
v(f(k)� z(k + b) + x) + ln[�(k + b)]gdt

subject to
_b = x

_k = _a� _b = (z � �)(k + b)� x

and k(0) = k0 > 0, b(0) = 0.

The Hamiltonian is

H = 
v(f(k)� z(k + b) + x) + ln[�(k + b)] +  k[(z � �)(k + b)� x] +  bx

From this we obtain

@H

@z
= (k + b)[ k � 
v0] = 0

@H

@x
= 
v0 �  k +  b = 0

_ k = � k � (f 0 � z)
v0 �
1

k + b
+  k(z � �)

_ b = � b + z
v0 �
1

k + b
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It is straightforward to show that at a steady state with _ k =
_ b =

_k = _b = 0,

we must have z = � = f 0(k�); and b� is given by


v0(f(k�)� �(k� + b�)) =
1

�(k� + b�)
(50)

Thus, in the presence of government bonds, the optimal tax on capital income

is zero at the steady state. Notice that from (50), if 
 is su�ciently great,

then b� is negative, implying that the government is a net creditor. One can

consider, as an illustration, the following scenario: suppose that initially the

economy has the capital stock k(0) = k� where f 0(k�) = �; and b(0) = 0.

Then the government imposes a tax � > 0 so that the after-tax income of

the representative capitalist is less than �k�. Since the capitalist's optimal

consumption rule is c = �k, to satisfy this consumption and to pay the income

tax, he must \eat up" part of his capital stock, if the government cannot be

a creditor. But since we allow b to be negative, the government can o�er the

capitalist to pay part of the tax in the form of I.O.U.s, and there need not be

any fall in k. This means that part of the physical capital stock k becomes

e�ectively owned by the government. At a steady state with a negative b�,

even though the tax rate is zero, the government is able to make lump-sum

payments to the workers, �nanced by the interest income it received from

the capitalists.

C. A discrete time formulation

In this Appendix, we show that the results of Section 2 can also be ob-

tained in a discrete time model. Capitalists maximize

1X
t=0

�tu(ct) (51)

subject to

ct + kt+1 = (1� � t)rtkt (52)

where rt is the gross rate of return, 0 < � < 1 is the discount factor, and k0
is given. This gives the Euler equation

u0(ct) = �u0(ct+1)(1� � t+1)rt+1 (53)

and the usual transversality condition. Workers consume

cwt = wt + � trtkt (54)
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The resource constraint is

ct + cwt + kt+1 = F (kt) (55)

where F (k) is the gross output (i.e., output plus the depreciated stock of

capital). Multiply (52) by �tu0(ct), then sum from t = 0 to 1, and using

(53) and the transversality condition to get the implementability condition:

1X
t=0

�tu0(ct)ct = u0(c0)(1� � 0)f
0(k0)k0 (56)

From (53) and (52),

ct + kt+1 =
ktu

0(ct�1)

�u0(ct)
(57)

The government seeks to maximize

1X
t=0

�t [u(ct) + 
v(cwt)] (58)

subject to (55), (56) and (57). We form the Lagrangian and let �t, �, and

�t be the Lagrange multipliers corresponding to (55), (56) and (57). Dif-

ferentiating the Lagrangian with respect to kt+1, ct, and cwt, we obtain the

following �rst order conditions

�t � �t = �t+1

"
u0(ct)

�u0(ct+1)

#
� �t+1F

0(kt+1) (59)

�tu0(ct) = ��t [ctu
00(ct) + u0(ct)]� �t + �t � �t

ktu
0(ct�1)u

00(ct)

� [u0(ct)]
2

+

�t+1
kt+1u

00(ct+1)

�u0(ct+2)
(60)

�t
v0(cwt) = �t (61)

Now let us consider a semi-stationary state. That is, we let ct = �c,

cwt = �cw and kt = �k. From (52), we then have

�t
�t

= �
0
= 
v0(�cwt) (62)
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Notice that while �t=�
t is a constant, it is not true that �t=�

t must also be

a constant. Equation (59) yields, in a semi-stationary state, a �rst order

di�erence equation in the discounted multiplier �t=�
t :

�t+1

�t+1
�
�t

�t
= �

0

h
�F 0(�k)� 1

i
(63)

From (60), in a semi-stationary state,

u0(�c)� 
v0(�cwt)� [�cu00(�c) + u0(�c)] � =
�t

�t

"
1 +

�ku00(�c)

�u0(�c)

#
+
�t+1

�t+1

"
�ku00(�c)

u0(�c)

#
(64)

Let us de�ne � by � = 1=(1+�). Then, in a semi-stationary state, (57) yields

�c = ��k: (65)

Then the right-hand side of (64) becomes

RHS =

"
�t+1

�t+1
�
�t

�t

# "
�ku00(�c)

u0(�c)

#
�
�t

�t

"
1�

�cu00(�c)

u0(�c)

#
=

�
0

h
�F 0(�k)� 1

i "�ku00(�c)
u0(�c)

#
�
�t

�t

"
1�

�cu00(�c)

u0(�c)

#
(66)

Consider now the implication of imposing full stationarity, i.e., (�t=�
t) �

(�t+1=�
t+1) = 0. Then (63) gives

F 0(�k) =
1

�
= 1 + � (67)

which determines �k, and the right-hand side of (64) becomes

RHS = ��0

"
1�

�cu00(�c)

u0(�c)

#
(68)

Equation (64) becomes

u0(��k)� 
v0[F (�k)� �k(1 + �)] = �
h
��ku00(��k) + u(��k)

i
� �0

"
1�

��ku00(��k)

u0(��k)

#
(69)
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However, if the function u(c) is logarithmic, then the right-hand side of

(69) becomes zero, and thus

u0(��k)� 
v0[F (�k)� �k(1 + �)] = 0 (70)

But generically �k cannot satisfy both (67) and (70). It follows that in the

case where u(c) is logarithmic, a full stationary equilibrium does not exist,

and we can only have a semi-stationary equilibrium, with capital stock bk that
satis�es the following condition, obtained from (64), (65) and (66):

u0(��k)� 
v0[F (�k)� �k(1 + �)] = ��
0

h
�F 0(�k)� 1

i
=� =

�

�

h
1 + �� F 0(�k)

i

v0[f(�k)� �k(1 + �)] (71)

From (71) � > F 0(�k) � 1 if and only if u0(��k) exceeds 
v0[F (�k) � �k(1 + �)].

This result is analogous to the one reported at the end of section 2.
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