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Résumé / Abstract
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du motif d’influencer la concentration de l’industrie. Notre méthode de solution
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d’optimalité globales.

We characterize optimal firm-specific emission tax rates, and optimal
firm-specific emission standards, and provide intuitive explanation on differential
treatments. We show that there is a unified framework for deriving firm-specific
policy measures. When firms are identical, the optimal policy may call for
“unequal treatments of equals”. When firms are not identical, we characterize the
optimal degree of dispersion of tax rates. The “unequal treatments of unequals”
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1 Introduction

When production generates pollution as a by-product, competitive �rms
over-produce in the sense that marginal social cost exceeds price. Under
perfect competition, a Pigouvian tax equal to marginal damage cost is called
for. When the market is not competitive, however, there is another source
of distortion. For example, under monopoly, output is restricted in order
to raise price. Because of this, a polluting monopoly may overproduce, or
underproduce, by comparison with the socially optimal output. Buchanan
(1969) and Barnett (1980) have shown that the optimal tax per unit of e-
mission under monopoly is less than the marginal damage cost (and it can
be negative). The case of oligopoly is more complicated. Katsoulacos and
Xepapadeas (1995), consider the case of a symmetric polluting oligopoly (i.e.,
they assume that �rms are identical) and show that if the number of �rms is
endogenous and if there are �xed costs, the optimal Pigouvian tax could ex-
ceed the marginal damage cost, because free entry may result in an excessive
number of �rms.

In this paper, we consider an asymmetric polluting oligopoly: �rms have
di�erent production costs, and their pollution characteristics may also be
di�erent. Asymmetry is important, because it is a prevalent real world fea-
ture, and because it introduces another source of distortion: in a Cournot
equilibrium, marginal production costs are not equalized across �rms, re-
sulting in production ineÆciency at any given total output. In this context,
pollution taxes or pollution standards must seek to remedy both the envi-
ronmental problem and the intra-industry production ineÆciency problem.
With asymmetric oligopoly, the regulator would want to be able to correct
distortion on a �rm-speci�c basis. While de jure di�erential treatments to
�rms in the same industry (in the sense that di�erent nominal tax rates ap-
ply to di�erent �rms), may be politically unacceptable in most economies, de
facto di�erential treatments (e.g., di�erent degrees of enforcement and ver-
i�cation, that have the same e�ects as di�erent tax rates) may be feasible.
In what follows, whenever the terms �rm-speci�c tax rates, or �rm-speci�c
pollution standards are used, they should be interpreted in the de facto sense.

The objective of this paper two-fold. Our �rst aim is to characterize
optimal �rm-speci�c emission tax rates, and optimal �rm-speci�c emission
standards, and to provide intuitive explanation of our results on di�erential
treatments. We would like to make clear that we do not seek to compare taxes
to standards, because there exists already a large literature on that subject.
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In fact, the model we develop to analyze optimal standards (in section 4) is
quite di�erent (in terms of the pollution generation process) from the model
we use to analyze optimal taxes, and therefore it would not make sense
to discuss, using our results, the relative attractiveness of these two policy
measures. Our reason for presenting results for taxes and standards in the
same paper is of a methodological nature: we wish to show that there is a
uni�ed framework for deriving optimal �rm-speci�c policy measures. This is
the second objective of our paper. Furthermore, it will become clear that our
uni�ed approach can be applied to related problems such as tradeble pollution
permits, and delocation in response to environmental regulations.(See Long
and Soubeyran, 2001b,c).

In the models we present below, we use a two-stage game framework.
In the �rst stage, the regulator sets �rm-speci�c taxes (in section 2), or
�rm-speci�c standards (in section 4). In the second stage, �rms compete in
the �nal good market. To �x ideas, we take the case where �rms produce
a homogenous good, and compete �a la Cournot. However, our analysis can
easily be adapted to deal with other cases, such as Bertrand competition with
di�erentiated products, spatial competition (as in the Hotelling model), and
even markets in which some �rms are Stackelberg leaders. (See Long and
Soubeyran, 1997a,1997b.)

The games considered in this paper belong to the class of games called
\cost manipulation games with costs of manipulating"(see Long and Soubeyran,
2001a). The regulator uses the chosen policy instrument to a�ect, on a dis-
criminatory basis, the marginal costs of individual �rms. This in turn a�ects
their equilibrium outputs and market shares. The costs of manipulating can
take di�erent forms, depending on the chosen policy instrument. In the case
of emission taxes, there is a transfer of funds from the private sector to the
public sector (or vice-versa, if the taxes are negative) and such a transfer is
not costless because a dollar in the hand of owners of �rms does not have
the same worth as a dollar in the hand of the government: as is well known,
the marginal cost of public fund is not unity, in general1. In the case of stan-
dards, �rms are induced to acquire costly equipment to reduce the pollution
generated by their production process. Such equipment alters the marginal
production costs.

1As Brander (1995, p 1410) puts it, \`raising subsidy revenue imposes distortionary
costs on the economy, implying that the opportunity cost of a dollar of of public fund
would exceed one". According to Ballard et al. (1985), this cost lies in the range of 1.17
to 1.56.
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A distinctive feature of our paper is that �rm-speci�c treatments are per-
mitted. While �rm-speci�c sales taxes or tari�s are generally not acceptable,
�rm-speci�c emission taxes or standards are more acceptable because it is
widely recognized that environmental problems vary with local conditions.
Our general formulation of the model of heterogenous �rms contains, as a
special case, a scenario where �rms are ex ante identical. We show that in
this case it is possible that the optimal policy calls for the \unequal treatment
of equals"2. For the more realistic case where �rms are ex ante heterogenous,
we characterize the optimal degree of dispersion of tax rates. The optimal
\unequal treatment of unequals" is explained in terms of the motive of the
government to a�ect the industry concentration. This is formulated as a
\concentration motive theorem", see section 3. Our new approach, which is
essentially geometric in nature, enables us to give optimality conditions in
global terms, in marked constrast to the usual local characterization.

We are able to provide a uni�ed treatment of �rm-speci�c pollution poli-
cies because we transform variables in such a way that all modes of inter-
vention (in distinct models of emission generation) can be seen to have the
same basic structure. We show that maximizing the �rst stage objective
with respect to one of the environmental instruments (such as Pigouvian
taxes, speci�c pollution standards, tradable pollution permits) is equivalent
to choosing the Cournot equilibrium quantities. This is because the dis-
criminatory use of policy instruments in the �rst stage amounts to the same
thing as manipulating the marginal costs of production which in turn a�ect
second-stage equilibrium outputs.

Formally, the �rst stage optimization has the structure of an inf-convolution
problem3:

min
xi

X
i2I

fi(xi; X)

subject to X
i2I

xi = X

xi � 0, i 2 I

2This possiblity has been recognized in Long and Soubeyran (1997a,b), and Salant and
Shafer (1999).

3See Rockafellar (1970).
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For the special case where marginal costs are independent of output level
and emissions are linear in output, we show that the above inf-convolution
problem is equivalent to minimizing the distance of a point in an n�simplex
to a given point outside the simplex. This geometric interpretation allows us
to obtain the optimal tax vector without computing derivatives. This is our
Projection Theorem, given in section 3.

The rest of our paper is organized as follows. In section 2, we charac-
terize optimal �rm-speci�c Pigouvian taxes. The results obtained in section
2 is given further interpretation in section 3, where we present a Projection
Theorem and a Concentration Motive Theorem. In sections 4 we present a
model of optimal �rm-speci�c pollution standards when choice of technology
is possible. In section 5, we examine optimal �rm-speci�c pollution standards
in the context of abatement costs. Section 6 o�ers some concluding remarks.
The Appendix deals with some technical matters.

2 Optimal Firm-speci�c Pigouvian Taxes

We now present our basic model of an asymmetric polluting oligopoly, and
derive the optimal �rm-speci�c Pigouvian taxes.

2.1 The basic model

We consider a polluting oligopoly consisting of n non-identical �rms pro-
ducing a homogenous �nal good, using an intermediate good that it also
produces. Thus, within each �rm, there is an upstream process and a down-
stream process. For the upstream process, �rm i has ui identical plants. The
cost of maintaining each plant is hi � 0. The cost of producing zi units of
this intermediate input in plant i is c(zi) where c(0) = 0 and c0 > 0 and
c00 � 0. If �rm i wants to produce xi units of the intermediate input, then
it instructs each plant to produce zi = xi=ui and thus the total cost is
uic(xi=ui). The production of the intermediate input generates pollutants.
Producing zi at each plant yields ei(zi) units of pollutants. Total emission
by �rm i is uiei(zi):

Turning now to the downstream process, we assume that to produce one
unit of the �nal good, �rm i needs one unit of the intermediate input, and
di units of a primary factor (say labor hours), whose price is unity. (The
downstream process may simply be transportation to the �nal good market.)
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Let qi denote �rm i's output of the �nal good.
Let I = f1; 2; :::; ng: The total output of the �nal good is Q =

P
i2I qi.

The inverse demand function for the �nal good is P = P (Q) where P 0(Q) < 0,
P (0) > c0(0) + di: Industry marginal revenue is assumed to be decreasing in
Q. We assume that �rm i must pay a tax ti per unit of its emission. Its
pro�t function is

�i = P (Q)qi � diqi � uici (qi=ui)� tiuiei(qi=ui)� uihi

where hi is the overhead cost at each plant.
We focus on the case where ei(zi) is linear, ei(zi) = "izi. In this case,

total emission by �rm i is ui"izi = "iqi. We de�ne

� i � ti"i (1)

so that � i is the tax per unit of output of �rm i, and let !i � di + � i. The
pro�t function becomes

�i = P (Q)qi � Ci(qi; !i; ui)

where Ci(qi; !i; ui) is the (tax-inclusive) total cost function:

Ci(qi; !i; ui) � !iqi + uici (qi=ui) + hiui

The (tax-inclusive) average variable cost function is:

�i(qi; !i; ui) = !i +
ci (qi=ui)

qi=ui
= !i +

ci(zi)

zi
(2)

and the marginal cost function is

�i(qi; !i; ui) = !i + c0i(zi) (3)

The di�erence between �i and �i , de�ned as ri, measures the degree of
convexity of the cost function. We have

ri = �i � �i = c0i(zi)�
ci(zi)

zi

If ci(:) is linear, then ri equals zero identically. If ci(:) is strictly convex, then
ri is positive for all zi > 0.

We will show how the government can optimally manipulate the tax-
inclusive costs of the �rms so as to maximize social welfare. To do this, we
set up the problem as a two-stage game. In the �rst stage, the government
sets �rm-speci�c taxes, and in the second stage, �rms compete as Cournot
rivals, taking tax rates as given. As usual, to solve for the optimal taxes, we
must �rst analyse the equilibrium of the game in stage two.

5



2.2 Stage two: Cournot equilibrium given tax rates

The �rst order condition for an interior equilibrium for �rm i is

@�i
@qi

= P 0(Q)qi + P (Q)� �i = 0; i 2 I (4)

We assume that these conditions determine a unique4 Cournot equilibrium
( bQ; bqi,i 2 I); where the hat over a symbol indicates that it is the Cournot
equilibrium value. It is convenient to express the equilibrium output of �rm i
as a function of the equilibrium output of the industry, and of the parameters
of �rm i's (tax-inclusive) cost function:

bqi = bqi( bQ; !i; ui) (5)

Inserting (3) and (5) into (4), we obtain

P 0( bQ)bqi( bQ; !i; ui) + P ( bQ) = !i + c0i

"bqi( bQ; !i; ui)

ui

#
(6)

Summing (6) over all i, we obtain the identity

P 0( bQ) bQ+ nP ( bQ) = n!I +
X
i2I

c0i

"bqi( bQ; !i; ui)

ui

#
(7)

where !I � (1=n)
P

i2I !i. Equation (7) indicates that, given the ui's, the
industry equilibrium output can be determined from the knowledge of the
!i's. Given the !i's, we assume that there exists a unique bQ that satis�es
(7). (See Long and Soubeyran (2000) for suÆcient conditions for uniqueness).
Thus we write bQ = bQ(!;u) (8)

where ! � (!1; !2; :::; !n) and u � (u1; u2; :::un):
We now express the equilibrium pro�t of �rm i as follows

b�i = � bP � b�i� bqi � uihi =
h� bP � b�i�+ �b�i � b�i�i bqi � uihi

= [�cP 0]bq2i + bri(bzi)uibzi � uihi
4For assumptions ensuring existence and uniqueness of equilibrium, see Long and

Soubeyran (2000).
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= [�cP 0]bq2i + ui [bzic0i(bzi)� ci(bzi)]� uihi (9)

where we have made use of the Cournot equilibrium conditionbP � b�i = [�cP 0]bqi (10)

Expression (9) deserves some comments. Since the pro�t expression in
(9) incorporates the Cournot equilibrium condition (10), it indicates that,
in the �rst stage of the game, while the government can manipulate thebqi and bQ via the choice of the policy parameters !i, it cannot violate the
Cournot equilibrium condition. (Technically, this is very much like the in-
centive compatibility constraint in principal-agent problems: the principal
cannot ignore economic agents' equilibrium conditions.) We now turn to a
complete analysis of the �rst stage of the game.

2.3 The �rst stage: optimization by the government

The objective of the government is to maximize a weighted sum of pro�t-
s, consumers' surplus, and tax revenue, minus the damage cost caused by
pollution

W =
X
i2I

�i + �S + 

X
i2I

tiei �D(E)

where E =
P

i2I uiei , D(E) is the damage cost, and S is the consumers'
surplus

S =

Z Q

0

P ( eQ)d eQ� P (Q)Q

The weight given to consumers' surplus is � > 0. The weight 
 > 0 is a
measure of the marginal cost of public fund (see Ballard et al. (1985)).

In what follows, we assume that the damage cost function is linear,
D(E) = �E > 0. We de�ne

Æi � �"i=
 (11)

Then the social welfare at a Cournot equilibrium may be written as

cW =
X
i2I

b�i + �S( bQ) + 

X
i2I

(� i � Æi)bqi( bQ; !i; ui) (12)

where bQ = bQ(!;u), and b�i is given by (9). Note that the right-hand side of
(12) contains tax payments by �rm in the expression b�i, and the social value
of tax revenue 
� ibqi. These two terms do not cancel out when 
 6= 1.
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From expression (12), we see that welfare can be maximized by an ap-
propriate choice of the �rm-specic tax rates � i. However, as we demonstrate
below, it is analytically much more convenient to solve the same welfare max-
imization problem using the equilibrium outputs bqi as choice variables, and
afterward infer the optimal taxes. The two methods yield the same solution.
We now transform variables so that the � i's are no longer explicitly present in
the objective function. We replace the � i's in (12) by equilibrium quantities.
From the equilibrium condition (4),cP 0bqi + bP = di + � i + c0(bqi=ui)
we get

� i � Æi = bqicP 0 + ( bP � di � Æi)� c0(bqi=ui) (13)

Substituting (13) into (12), we getcW = F ( bQ)�X
i2I

fi(bqi; bQ) (14)

where
F ( bQ) � �S( bQ) + 
 bP bQ�H (15)

H �
X
i2I

uihi

and
fi(bqi; bQ) � (di + Æi)
bqi + (
 � 1)[�cP 0]bq2i + ui�i (16)

�i � (
 � 1)bzic0i(bzi) + ci(bzi)
Note that for given bQ, fi is strictly convex in bqi if 
 > 1, c00i � 0 and c000i � 0:
Expression (14) shows that welfare is directly dependent on the bqi's. The tax
rates do not (explicitly) appear in this expression. ThuscW can be maximized
by the direct choice of the equilibium outputs. Afterwards, the taxes can be
inferred from (13).

We have thus obtained a very useful lemma:
Lemma 1: In the welfare maximization problem, there is a one-to-one

correspondence between determining �rm-speci�c emission tax rates to max-
imize welfare, expression (12), and determining Cournot equilibrium outputs
to maximize welfare, expression (14).

We note that taxing �rms is a way of manipulating their marginal costs.
Thus, our Pigouvian taxation problem is a special case of the \cost manipu-
lation approach." (See Long and Soubeyran, 1997a, 1997b, 2001a).
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2.4 A benchmark case: perfect competition

Before solving for optimal emission taxes in an asymmetric oligopoly, it is use-
ful to consider a benchmark case, with perfect competition, using our \cost
manipulation approach." We assume in this subsection that the marginal
cost of public fund is unity, 
 = 1, and the weight given to consumers'
surplus is also unity, � = 1.

Perfect competition means that each �rm thinks that its output has no
e�ect on the price, i.e., the term P 0(Q) does not appear (i.e., is assigned the
value zero) in the �rm's �rst order condition. Therefore (13) reduces to

� i = bP � di � c0(bqi=ui) (17)

With 
 = � = 1 social welfare (14) becomescW = S( bQ) + bP bQ�H �
X
i2I

[(di + Æi)bqi + uici(bzi)] (18)

Writing bQ =
P

i2I bqi and maximizing (18) with respect to the bqi's, we obtainbP � di � Æi � c0i(bzi) = 0 (19)

which says that marginal social cost of �rm i's output must be equated to
price, a standard result. From (19) and (17), we get � i = Æi, and hence, using
(1) and (11),

ti =
�



� Æ for all i 2 I (20)

(where 
 = 1) that is, the tax per unit of pollutant discharged by �rm i
is equal to the marginal damage cost. Thus, under perfect competition, all
�rms are treated equally. (We will later show that this \equal treatment"
result does not apply to the oligopoly case.) Even though this result is well
known, it is useful for future reference to state it as a proposition:

Proposition 1: (Benchmark Pigouvian tax)Under perfect competi-
tion, the optimal Pigouvian tax ti (per unit of pollutant discharge) is the
same for all �rms and equal to the marginal damage cost Æ. Thus all �rms
are treated equally.

Proposition 1 implies that, under perfect competition, the optimal tax
per unit of output is �Bi = �



"i � Æi where the superscript B indicates the

optimal value for the benchmark case, and Æi is the (adjusted) marginal
damage caused by a unit of output of �rm i.
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2.5 An oligopoly with constant marginal cost

Now we turn to the case of an oligopoly with constant marginal cost: ci(z) =
�iz. (The increasing marginal cost case is treated in Appendix 1.) In this
case, (16) becomes

fi(bqi; bQ) � (di + Æi + �i)
bqi + (
 � 1)[�cP 0]bq2i (21)

We de�ne the marginal social cost of �rm i's output as

si � di + Æi + �i (22)

We consider two sub-cases: (a) 
 = 1 and (b) 
 > 1.

2.5.1 Sub-case (a): 
 = 1

In this sub-case, the marginal cost of public fund is unity. It is easy to show
that the optimal policy is to design taxes so that only the �rm with the
lowest marginal social cost will produce. Without loss of generality, assume
s1 < s2 < s3 < ::: < sn. Then, if @cW=@bq1 = F 0( bQ)� s1 = 0 it must be true

that, for all j > 1, @cW=@bqj = F 0( bQ)�sj = s1�sj < 0, implying that bqj = 0.
It follows that at the social optimum, only �rm 1 produces.

An intuitive explanation of this result is as follows. Suppose that at an
equilibrium both �rms 1 and 2 produce positive outputs, and they satisfy
the Cournot equilibrium conditions

P ( bQ) + P 0( bQ)bq1 = d1 + �1 + � 1

and
P ( bQ) + P 0( bQ)bq2 = d2 + �2 + � 2

Then, social welfare can be increased by raising � 2=[�P
0( bQ)] by � > 0 and

reducing � 1=[�P
0( bQ)] by �, so that �rm 1's output will increase by � and

�rm 2's output will fall by �, leaving industry output and price unchanged.
Social welfare increases because the total cost of producing the given outputbQ is now lower. Tax revenue will change, but industry pro�t, de�ned as sales
revenue, minus production cost, minus tax payment) will change by the same
amount, therefore, given that 
 = 1, the tax revenue change does not matter.

10



2.5.2 Sub-case (b):

Let us turn to sub-case (b), where 
 > 1. In this case, (16) becomes

fi(bqi; bQ) � (di + Æi + �i)
bqi + (
 � 1)[�cP 0]bq2i � aibqi + b( bQ)bq2i (23)

where ai � 
si is the weighted marginal social cost of �rm i's output, and
b( bQ) � (
 � 1)[�cP 0]. For given bQ, the function fi(bqi; bQ) is quadratic and
strictly convex in bqi. A very e�ective way to characterize the optimal outputs
is to use the following two-step procedure.

The two-step procedure:
In step 1, we �x an arbitrary level of industry output, bQ; and maximize

welfare by choosing the bqi's subject to the constraint thatPi2I bqi = bQ. This
gives the optimal value of bqi, conditional on the given bQ . In the second step,
we determine the optimal industry output.

Step 1:
Given bQ, we write the Lagrangian as

L = F ( bQ)�X
i2I

fi(bqi; bQ) + �

"X
i2I

bqi � bQ# (24)

From this we obtain the conditions

�ai � 2b( bQ)eqi + � = 0; for all i 2 I (25)

where eqi denotes the optimal value of bqi, conditional on the given bQ. From
(25), eqi = �� ai

2b( bQ) for all i 2 I (26)

Summing (26) over all i, we obtain an expression showing that � is uniquely

determined by bQ
� = e�( bQ) = aI +

2

n
b( bQ) bQ (27)

where aI � (1=n)
P

i2I ai. Substituting (27) into (26), and letting bqI � bQ=n,
we get eqi( bQ) = bqI � 1

2b( bQ) [ai � aI ] for all i 2 I (28)
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This equation gives us:
Lemma 2: The optimal deviation of the output of �rm i from average

industry output is a linear function of the deviation of its marginal social
cost from the industry average.

Remark: To illustrate, consider a pair of �rms (1; 2) with marginal social
costs s1 < s2. Then (28) gives

eq1( bQ)� eq2( bQ) = 


2(
 � 1)[�cP 0]
[s2 � s1] (29)

That is, the solution of the optimization problem has the property that the
�rm with higher marginal social cost produces less than the �rm with lower
marginal social cost. Note that, for a given bQ, a greater 
 implies a small-
er gap between eq1 and eq2, but this gap is always positive and greater than
[s2�s1]=2[�cP 0]. This may be explained as follows: a greater 
 implies that a

greater weight is given to tax revenue. Thus, for any given bQ, a marginal in-
crease in 
 would increase the government's desire to increase tax revenue at
the cost of reduced productive eÆciency (here, productive eÆciency includes
not only private cost considerations, but also environmental cost). The gov-
ernment would therefore raise � 1 by some small amount � > 0 and at the
same time reduce � 2 by � , thus leaving total output bQ constant. The increase
in tax revenue is approximately (eq1� eq2)� and this must be balanced against
the marginal loss in productive eÆciency associated with the increase in the
output of the high-cost �rm and the reduced output of the low-cost �rm.

Step 2:
Using the results in step 1, we are now ready to �nd the optimal industry

output. We make use of the fact that the optimal value of the Lagrangian,
given bQ, is equal to the maximized W , given bQ. Thus

eL( bQ) = F ( bQ)� e�( bQ) bQ+
X
i2I

f �i

he�( bQ); bQi
where

f �i (�; bQ) � sup
qi

�bqi � fi(bqi; bQ)
(f �i (�; bQ) is called the conjugate function of fi(bqi; bQ), see Rockafellar, 1970,
section 12.) In the present case,

f �i (�; bQ) = [aI + 2bbqI ] eqi � �aieqi + beq2i �
12



= �(ai � aI)eqi � b [eqi � bqI ]2 + bbq2I
Thus, using (28)

f �i (�; bQ) = �(ai � aI)bqI + bbq2I + 1

4b( bQ)(ai � aI)
2

and, using (27), the maximized welfare, for given bQ, is
fW ( bQ) = F ( bQ)� "aI + 2b( bQ) bQ

n

# bQ
+nb( bQ) bQ

n

!2

+
1

4b( bQ)Xi2I (ai � aI)
2

Hence

fW ( bQ) = F ( bQ)� aI bQ� 1

n
b( bQ) bQ2 +

1

4b( bQ)Xi2I (ai � aI)
2 (30)

Maximizing (30) with respect to bQ, we get the necessary condition

F 0( bQ)� aI �
1

n
b0( bQ) bQ2 �

2

n
b( bQ) bQ� b0( bQ)

4b2( bQ)Xi2I (ai � aI)
2 = 0

This equation determines the optimal value of bQ, which we denote by eQ.
The optimal output for �rm i is

eq�i = �
� eQ�� ai

2b( eQ) for all i 2 I

From this, we derive the optimal �rm-speci�c tax e� i, using (13):
e� i = eq�i P 0( eQ) + (P ( eQ)� di)� c0(eq�i =ui): (31)

Let
�i � e� i � Æi (32)
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denote the gap between the optimal �rm-speci�c tax � i and the benchmark
tax Æi (as described in Proposition 1).

�i = eq�i P 0( eQ) + P ( eQ)� si =
(2� 
)si
2(
 � 1)

+ P ( eQ)� �
� eQ�

2(
 � 1)
(33)

In particular, for any pair of �rm (i; j), we have

�i ��j = (e� i � Æi)� ( e� j � Æj) =
2� 


2(
 � 1)
(si � sj) : (34)

Thus, if Æi = Æj and si < sj then e� i < e� j, provided 
 < 2. That is, the
more eÆcient �rm pays a lower tax rate. However, note that (2�
)=2(
�1)
is a decreasing function of 
; therefore the gap e� i� e� j becomes narrower
as 
 increases (because with a greater 
, revenue considerations become
more important, and the government increases the tax rate on the bigger
�rms.) The next section is devoted to further economic interpretations of
these results.

3 Properties of Optimal Firm-speci�c Pigou-

vian Taxes

In an oligopoly with �rms having di�erent production costs, it is in gen-
eral not optimal to tax �rms equally for their pollution. This is because
the Pigouvian taxes now serve two purposes: correction for pollution ex-
ternalities, and correction for market power and for production ineÆcien-
cy (because oligopolists do not equalize marginal production costs among
themselves.) We now seek to characterize the optimal departure from the
benchmark Pigouvian taxes Æi (i.e., the one given in Proposition 1).

3.1 A theorem on optimal Pigouvian distortions

From (29), at the optimal solution, the taxes are such that the more eÆcient
�rms (those �rms with low si) always produce more than the less eÆcient
ones. The quantity �i measures the deviation of optimal �rm-speci�c tax
under oligopoly from the �rm-speci�c marginal damage cost caused by a unit
of output of �rm i. In what follows, we assume 2 > 
 > 1 (to be in line with

14



the empirical estimation of the marginal cost of public fund by Ballard et
al.,1985) and ci(z) = �iz. We will call �i the optimal Pigouvian distortion
for �rm i. Let us �rst compute the gap between �i and the industry average
�I . From (34),

�i ��I =
2� 


2(
 � 1)
(si � sI) (35)

where si is the marginal social cost of �rm i's output.
From this, we can compute the variance of the statistical distribution of

the Pigouvian distortions:

V ar� =

�
2� 


2(
 � 1)

�2
V ar [s] (36)

Proposition 3.1: (Optimal distortions theorem).The variance of
the statistical distribution of the Pigouvian distortions is given by (36), and

(i) An increase in 
 will lead to a decrease in this variance.
(ii) In the empirically relevant range of 
, i.e., 1 < 
 < 2, if the marginal

social cost si of �rm i is greater than the industry average, the Pigouvian
distortion for �rm i will be greater than average Pigouvian distortion.

(iii) The variance of the Pigouvian distortions is greater (respectively,
smaller) than the variance of the marginal social costs if 1 < 
 < 4=3 (re-
spectively, 4=3 < 
 < 2).

Remark: In the rather extreme case where 
 > 2 (which is unlikely
from empirical data) we obtain the reversal of (ii) above: When 
 > 2, if
the marginal social cost si of �rm i is greater than the industry average,
the Pigouvian distortion for �rm i will be smaller than average Pigouvian
distortion. It remains true that the optimal solution implies that the more
eÆcient �rms have greater outputs, see (29).

The Optimal Distortion Theorem provides a link between the ex-ante
heterogeneity of the oligopoly's cost structure and the ex-post dispersion of
the �rm-speci�c Pigouvian tax rates.

3.2 A geometric interpretation: the Projection Theo-

rem

We now provide a geometric interpretation of the optimal choice of outputs.
Consider the �rst step in the two-step procedure explained in section 2.5.2.
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That step is equivalent to the program of choosing the bqi (i 2 I) to

min
X
i2I

fi(bqi; bQ)
subject to

P
i2I bqi = bQ (given) and bqi positive. This step can be described

by the following Projection Theorem.
Proposition 3.2 (Projection Theorem) The determination of the

optimal composition of industry output is equivalent to choosing a vectorbq � (bq1; :::; bqn) from an n � 1 dimensional simplex S so as to minimize the
distance between the vector bq and a reference vector q� � (q�1 ; :::; q

�

n ) where

q�i � �
ai

2b( bQ) (37)

and where
S � fbq � 0 :

X
i2I

bqi = bQg
Proof:

fi(bqi; bQ) = aibqi + b( bQ)bq2i = b( bQ) ��bqi + ai
2b

�2
�

a2i
4b2

�
= b

h�bqi � q�i
�2
�
�
q�i
�2i

Thus X
i2I

fi(bqi; bQ) = bkbq� q�k2 � b
X
i2I

�
q�i
�2

where the second term on the right-hand side depends only on bQ, which is
�xed, and the �rst term on the right-hand side is b times the square of the
distance of the point bq in the set S (which is an n�simplex) to the given

point q�. Given bQ, both b and q� are �xed. It follows that the �rst step
(24) of the program is equivalent to �nding the minimal distance between bq
and the given point q�:

The optimal eq which achieves the minimal distance kbq� q�k is the pro-
jection of q� on the n�simplex S. Its components are given by

eqi = eqI � 1

2b( bQ)(ai � aI) (38)
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which is (28). Figure 1 illustrates the case n = 2. The projection eq satis�es

eq = q� + (eqI � q�I )u

where u =(1; 1; :::; 1) where q�I = � aI
2b( bQ)

.

3.3 The Concentration Motive

Our result shows that �rm-speci�c Pigouvian taxes in a polluting oligopoly
serve two functions: the usual function of correcting for externalities, and
the function of correcting for production eÆciency. For this second function,
the optimal tax vector depends on two elements (i) the degree of unit-cost
asymmetry in the oligopoly, and (ii) the cost of public fund. The �rst element
is measured by the variance of the statistical distribution of unit costs before
and after taxation (this variance is related to the Her�ndahl index.) The
second element is measured by 
 and re
ects the trade-o� between pro�ts
and tax revenue.

Does the optimal Pigouvian tax structure increase or decrease the con-
centration of the industry? Before answering this question, it is necessary to
examine the relationships among the variance of the distribution of the unit
costs, the Her�ndahl index of concentration, industry pro�t, and welfare. We
now state a number of lemmas concerning these relationships. First, recall
that the Her�ndahl index of concentration is

H =
X
i2I

�
qi
Q

�2
Given that there are n �rms, this index attains its maximum value (H = 1)
when one �rm produces the whole industry's output and the remaning n� 1
�rms produce zero output, and it attains its mimimum value (H = 1=n)
when each of the n �rms produces qi = Q=n. Now all �rms will produce the
same amount of output if they have the same tax-inclusive marginal costs.

Lemma 3.1: For a given output level bQ; the Cournot equilibrium indus-
try pro�t is an increasing function of the Her�ndahl index of concentration.

Proof: Recall that at a Cournot equilibrium, �rm i's pro�t is e�i =
[�cP 0]bq2i + ui [bzic0i(bzi)� ci(bzi)] � uihi. With ci(zi) = �izi, the industry pro�t
is b� =

X
i2I

e�i = h� bP 0

i bQ2 bH + constant

17



where bH =
X
i2I

� bqibQ
�2

(39)

Lemma 3.2: Given the output level bQ, the Her�ndahl index of concen-
tration is an increasing function of the variance V ar(b�) of the distribution of
the tax-inclusive marginal costs in a Cournot equilibrium.

bH =
1

n

2641 + V ar(b�)h
(� bP 0)bqIi2

375 � 1

n
(40)

Thus any policy that maximizes [respectively, minimizes] the variance of
the distribution of tax-inclusive marginal costs will maximize [respectively,

minimizes] the concentration of the industry, and, for a given bQ, maximizes
the pro�t of the industry.

Proof:
From (4),

bqi = bP � b�i
(� bP 0)

(41)

we obtain X
i2I

bq2i =X
i2I

1

(� bP 0)2

h
( bP � b�I)� (b�i � b�I)i2

=
1

(� bP 0)2

"
n( bP � b�I)2 +X

i2I

(b�i � b�I)2#

=
1

(� bP 0)2

�
n
�
(� bP 0)bqI�2 + nV ar(b�)� (42)

The result (40) follows from (42) and (39).

Proposition 3.2 (A pro-concentration motive theorem)
Assume that all �rms have the same emission coeÆcients: �i = � for all i.

Given 2 > 
 > 1, the optimal �rm-speci�c Pigouvian tax structure increases
the variance of the statistical distribution of tax-inclusive marginal costs
within the oligopoly relative to the variance of the statistical distribution of
pre-tax marginal costs5. The relationship between the two variances is given

5In the empirically unlileky case where 
 > 2; replace \increases" by \decreases".
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by:
V ar(e�) = 
(
)V ar(�0) (43)

where �0i = di + �i is the equilibrium marginal cost of �rm i in a Cournot
equilibrium where all the taxes are zero, and where


(
) �

�



2(
 � 1)

�2
> 1.

Proof: First, note that if all the taxes are zero, then

�0i � �0I = (di � dI)� (dI + �I) (44)

Recall that bqi denote the equilibrium Cournot output of �rm i given
an arbitrary vector of �rm-speci�c taxes, and eqi is the equilibrium Cournot
output of �rm i when the taxes are optimized. From (28), and (41), which
is true also when the tilda replaces the hat,

eqi � eqI = �
(e�i � e�I)h
� eP 0

i = �
(ai � aI)

2(
 � 1)
h
� eP 0

i
Hence e�i � e�I = 


2(
 � 1)
[(di + �i)� (dI + �I) + (Æi � ÆI)] (45)

Therefore e�i � e�I = 


2(
 � 1)

�
(�0i � �0I) + (Æi � ÆI)

�
V ar(e�) = � 


2(
 � 1)

�2 �
V ar(�0) + V arÆ + 2cov(�0; Æ)

�
(46)

If �i = � for all i, then, in view of (1) and (11), (46) reduces to (43). Note
that 
(
) > 1 if 1 < 
 < 2.

Remark: The intuition behind the pro-concentration motive theorem is
as follows. If Æi = Æ for all i, the marginal cost of public fund is within the
empirically likely range (1 < 
 < 2), then, for any given industry output level,
the optimal �rm-speci�c tax structure increases the variance of marginal costs
(from V ar(�0) to 
(
)V ar(�0)) by taxing more eÆcient �rms at a lower rate,
see (34), because this helps the lower cost �rms to expand output relative to
the higher cost �rms, and as a result improves productive eÆciency. However,
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if 
 is great, the tax revenue becomes a very important consideration, and
it becomes optimal to tax more eÆcient �rms at a higher rate, so as to
generate more revenue. Take for example the case of a duopoly, where �rm 2
has higher production cost. For a given level of industry output bQ, we must
maintain t1+t2 = constant, say 2�t. From an initial assignment (t1; t2) = (�t; �t),
consider deviation of t2 from �t, say t2 = �t + �, and hence t1 = �t � �. An
increase in � yields marginal gain in production eÆciency, because the same
level of industry output bQ is produced, but the lower cost �rm increases its
output and the higher cost �rm reduces its output. However, an increase in
� by �� implies reduced tax revenue, by approximately (bq1 � bq2)��;(plus
the e�ect of induced changes in composition of industry output) and this
implies increased distortion cost, approximately (
 � 1)��(bq1 � bq2). For a
given 
 > 1, the optimal deviation �� is at the point where the marginal gain
in productive eÆciency is equated to the marginal increase in distortion cost.
Clearly, a higher 
 shifts the marginal distortion cost upwards, implying a
smaller ��.

4 Pollution Standards and Choice of Tech-

nology with Set-up Costs

The model of sections 2 and 3 is appropriate if there is a �xed relationship
between output level and emission. Such a speci�cation is quite realistic
when the time horizon is suÆciently short. However, if we are dealing with
a longer run optimization problem, we must take into account the fact that
�rms will be able to choose among various techniques of production, some of
which are less polluting then others. The cleaner the technique, the higher
is the set-up cost. We now turn to this type of long run considerations
while retaining the oligopoly framework. Unlike the preceding section, we
will focus on a di�erent instrument of regulation: the use of �rm-speci�c
pollution standards. By this, we mean that the regulator sets an upper
limit, denoted by �ei, on pollution emission per period for �rm i.

We assume that the actual level of emission generated by �rm i is denoted
by ei. The amount ei is a function of the output qi and a technology param-
eter �i chosen by �rm i. A greater �i indicates a more polluting technology.
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Thus, we assume

ei = ei(qi; �i);
@ei
@�i

> 0;
@ei
@qi

> 0 (47)

In choosing qi and �i, the �rm i must make sure that

ei(qi; �i) � ei: (48)

If the �rm i chooses the technology �i, it incurs a set-up cost Ki(�i).
We assume K 0

i(�i) < 0, i.e., cleaner techniques involve higher set-up costs.
Inverting (47), we get

�i = �i(qi; ei)

It follows that
Ki = Ki [�i(qi; ei)] = Ki(qi; ei)

Firm i's pro�t function is

�i = P (Q)qi � diqi � uici

�
qi
ui

�
�Ki(qi; ei)� uihi (49)

We are dealing with optimal regulation by means of choosing �rm-speci�c
standards. Clearly, the problem would be trivial if at the social optimum,
none of the n constraints (48) bind. In what follows, we assume that all these
constraints hold with equality. Thus we will use ei and �ei interchangeably.
We suppose that �rm i takes �ei as given, and chooses qi to maximize its
pro�t, given the outputs of other �rms. Then the �rst order condition for
the output choice of �rm i is

bqiP 0( bQ) + P ( bQ) = �i � di + c0(bz) + @Ki(bqi; ei)
@qi

(50)

For concreteness, we focus on the case where the production cost is linear
in output c0(bz) = �i and the emission function is linear in the technology
choice parameter �;

ei = ei(qi; �i) = �iqi (51)

Thus �i may be called the pollution content per unit of output: We speci�es
that
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Ki(�i) = �K � �i (52)

where �i can be chosen from the interval [0; �K]: If �i = �K (a very polluting
technology) then the set-up cost is zero. If the �rm chooses a very clean
technology, i.e., �i = 0, then the set-up cost is �K.

The speci�cation (51) implies that, given the maximum permissible e-
mission ei, if the �rm wants to produce the amount qi; it must choose the
technology

��i =
ei
qi

or a cleaner technology, �i � ��i. But cleaner technologies cost more. So the
�rm has no incentive to choose any technology other than ��i. The cost Ki

can therefore be expressed as a function of ei and qi:

Ki(qi; ei) = �Ki �
ei
qi

(53)

For simplicity, from this point we will omit the bar over ei. Then using (53),
the average variable cost is

b�i = di + �i +
�Kibqi � eibq2i (54)

and (50) becomes

bqiP 0( bQ) + P ( bQ) = di + �i +
eibq2i � b�i i 2 I (55)

From (55), given the vector (e1; e2; :::; en) we can obtain the vector of equi-
librium Cournot outputs (bq1; bq2; :::; bqn). Conversely, if we know the the equi-

librium pair (bqi; bQ) then we can infer from (55) (a) the equilibrium emission
by �rm i:

ei = ei(bqi; bQ) = hbqiP 0( bQ) + P ( bQ)� di � �i
i bq2i (56)

and (b) the technology choice

�i =
ei
qi

=
hbqiP 0( bQ) + P ( bQ)� di � �i

i bqi (57)

Using (54),

b�i = � bP � b�i� bqi � uihi =
h� bP � b�i�+ �b�i � b�i�i bqi � uihi
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=
h
�P 0( bQ)i bq2i + �b�i � b�i� bqi � uihi (58)

Therefore the equilibrium pro�t of �rm i is a function of ei

b�i = h�P 0( bQ)i bq2i + �2eibqi
�
� �Ki � uihi (59)

In this section, by assumption, there are no taxes, because we want to
focus on �rm-speci�c pollution standards. Social welfare at a Cournot equi-
librium is a weighted sum of of consumers' surplus (net of pollution damage
cost) and pro�ts: cW = �S( bQ)� � bE +

X
i2I

b�i (60)

To solve the welfare maximization problem, we may proceed in two dif-
ferent (but equivalent) ways. The �rst way is to express the bqi as functions of
the vector (e1; e2; :::; en), so that cW = cW (e1; e2; :::; en); and we maximize cW
by choosing the vector (e1; e2; :::; en), which can be interpreted as pollution
quotas (or standards) that are assigned to �rms. The alternative way is to
make use of the fact that there is an inverse relationship, given by (56), so
that we can formulate the problem as one of choosing the bqi. In what follows,
we use this approach, because it is mathematically simpler, and its method-
ology is essentially identical to the one we used in the Pigouvian tax case.
This vindicates our claim in the introduction section that we have found a
uni�ed approach for both types of regulations.

Substituting (56) into (59), we get

b�i = 2 bP bqi � �Ki � uihi �
h
2(di + �i)bqi + �� bP 0

� bq2i i (61)

and industry pro�t is

b� = 2 bP bQ� n �KI �H �
X
i2N

h
2(di + �i)bqi + �� bP 0

� bq2i i (62)

Social welfare, expression (60) can be written as

cW = F ( bQ)�X
i2I

fi(bqi; bQ) (63)

where
fi(bqi; bQ) = 2(di + �i)bqi + �� bP 0

� bq2i + �ei(bqi; bQ)
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where, as can be seen from (56), ei(bqi; bQ) is a cubic function of bqi, for givenbQ. To maximize (63), we use the familiar two-step procedure, just as in the

Pigouvian tax case. In the �rst step, we �x bQ, and choose the bqi, i 2 I, to
solve

max
bqi

F ( bQ)�X
i2I

fi(bqi; bQ) (64)

subject to X
i2I

bqi = bQ (65)

The objective function (64) is strictly concave in the bqi, i 2 I, if @2fi=@bq2i > 0.
Now

@2fi
@bq2i = 2

�
� bP 0

�
[1� 3�bqi] + 2�

h bP � di � �i

i
> 0

Since bP � di � �i > 0 from (55), a suÆcient condition for @2fi=@bq2i > 0 is
1 � 3�bqi > 0. Let �Q be de�ned by P ( �Q) = 0. Then, given that bqi < �Q,
1� 3�bqi > 0 if � > 1=(3 �Q): We assume that this inequality holds. Then (64)
is strictly concave in the bqi. Let � be the Lagrange multiplier associated with
(65). Then in the �rst step, we obtain the necessary condition

@fi
@bqi = �

from which we can express bqi as a function of � and bQ :

bqi(�; bQ) = 1

6� bP 0

n
2 bP 0 � 2�( bP � di � �i) +

p
Yi

o
where

Yi � 4
h�
� bP 0

�
+ �

� bP � di � �i

�i2
+ 24�

�
� bP 0

�
[2(di + �i)� �]

The equation
P

i2I bqi(�; bQ) = bQ determine �( bQ).
In step 2, we �nd the optimal value for bQ, which we denote as eQ. (This is

similar to the method used in Section 2.5.2, so we will not give details here.)

We then obtain e� = �( eQ) and eqi = bqi(e�; eQ). The optimal pollution quota
(standard) for �rm i is then, from (56)

eei = heqiP 0( eQ) + P ( eQ)� di � �i

i eq2i
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Proposition 4.1: (Optimal standards in the presence of set-up
costs: equal treatment of equals) Assume that �rms can choose their
pollution content parameter �i at the cost given by (52), and � > 1=(3 �Q).
Then if all �rms are ex ante identical, the social planner will give them equal
treatment.

Remark: The \equal treatment of equals" result follows from the con-
cavity of the social welfare function. In the next section, we will show that,
for certain abatement cost functions, the social welfare function is convex in
the equilibrium outputs, and it will then be optimal to have unequal treat-
ment of equals.

5 Pollution Standards and Abatement Costs

We now turn to a model in which �rms can reduce emission at any given
output level, by incurring abatement costs (which is a function of both the
output level and the emission level. Unlike the preceding section, there is no
set-up cost. As an illustration, consider the following example.

Example 1: A �rm produces an output q by using raw material M and
a composite input Y which itself is produced using three inputs, labor, L,
capital, K, and emission, e. Assume the production function is

q = minfM;Y g

where
Y = F (L;K; e) =

p
(1 + minfe; zg)KL (66)

where z is a positive constant. In this example, for any given level of out-
put, the emission level e can be reduced by increasing K or L. Thus if the
regulating agency reduces the maximum permissible e, the �rm can comply
by increasing K without reducing q. In this sense, investment in K is a
pollution-abating activity.

Let c be the unit cost of raw material.The wage rate is w and the rental
rate is r, while emission costs nothing. In the absence of regulation, the �rm
will choose e = z; to save on capital and labour inputs. Suppose, however,
that the �rm is not allowed to emit more than e:We assume e < z. Then the
�rm's cost of producing q units of output can be derived from the following
cost minimization problem with respect to K;M;L and e :

min[rK + wL+ cM ]
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subject to p
(1 + minfe; zg)KL � q

M � q

and
e � e

Since by assumption, e < z, the above minimization problem yields the cost
function

C(c; w; r; q; e) = cq + [2(rw)1=2]
q

[1 + e]1=2
� cq + A(e; q)

where the dependence of A on (r; w) has been suppressed for notational
simplicity. The function A(e; q) may be called the \abatement cost"function:
for any given q, to achieve a smaller �e, the �rm must incur a greater cost,
that is, @A=@�e < 0.(End of example.)

In what follows, we adopt a more general abatement cost function, and
write

Ai(ei; qi) = ai(ei)v(qi) (67)

with ai(ei) > 0 for all ei � 0, a0i(ei) < 0, a00i (ei) � 0, v0(qi) > 0, v00(qi) � 0,
and v(0) = 0. Thus Ai is convex in both arguments, and Ai(ei; 0) = 0:Then
�rm i's pro�t is

�i = qiP (Q)� ciqi � Ai(qi; ei) (68)

(Note that there is a formal similarity between (68) and (49), but in the
speci�cation (53), Ki is concave in qi while, from (67), Ai is convex in qi,
with Ai(ei; 0) = 0:)

We assume that the regulating agency speci�es an amount ei (i.e., max-
imum pollution per period) that �rm i must not exceed. We take it that
the �nes for violation are suÆciently high to ensure perfect compliance. It
follows that if the �rm wants to produce quantity qi then it must spend the
amount Ai(ei; qi). We call ei the \�rm-speci�c emission standard" set by the
regulatory agency.

We wish to determine the optimal con�guration of �rm-speci�c standards
that maximizes social welfare, given the constraints that �rms are oligopolist-
s. As usual, social welfare consists of consumers' surplus, pro�ts, minus the
environmental damage caused by emissions:
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W = S(Q) +
X
i2I

�i �D(E) (69)

where E =
P

i2N ei and D(E) is the damage function. For simplicity, assume
that the damage function is linear: D(E) = �E. We assume that the only
policy instrument that the agency has is the setting of standards.

Before determining the optimal �rm-speci�c standards, we must investi-
gate how these standards a�ect the pattern of production and pro�ts within
the oligopoly. It is instructive to begin our analysis with an example.

Example 2: (Asymmetric emission standards, applied to identi-
cal �rms, can improve pro�ts and welfare)

Consider a duopoly with identical �rms facing a linear inverse demand
function P = 1�Q: Assume the function A(e; q) takes the form

A(e; q) = 3a(e)q2

where a0 < 0 and a00 > 0, and in particular, a(0:5) = 1=2, a(0:4) = 3=2, and
a(0:6) = 1=4. Suppose that the emission standards are �xed at e1 and e2:
Then, the equilibrium outputs satisfy the �rst order conditions (assuming an
interior solution):

�q̂1 + (1� Q̂) = 6a(e1)q̂1 � �1

�q̂2 + (1� Q̂) = 6a(e2)q̂1 � �2

Adding these two equations yields

Q̂+ 2(1� Q̂) = �1 + �2 � 2�N

It follows from this equation that the regulator can change the �rm-speci�c
pollution standards in such a way that �N remains unchanged (implying that
Q̂ is unchanged) with the possibility of improving welfare. To see this, assume
that initially e1 = e2 = 0:5. Then equilibrium outputs are q̂1 = q̂2 = 1=6
and Q̂ = 1=3. Equilibrium price is 2/3, and equilibrium marginal costs are
�1 = �2 = 1=2: Now suppose the regulator wants to keep �N at 1/2, while
increasing �1 to 6/10 and decreasing �2 to 4/10: Then Q̂ remains unchanged,
and

q̂1 = (1� Q̂)� �1 = 2=30

q̂2 = (1� Q̂)� �2 = 8=30
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This implies that the new standards, denoted by e�1 and e�2 must satisfy

a(e�1) =
�1
6q̂1

= 3=2

a(e�2) =
�2
6q̂2

= 1=4

Our assumptions on a(:) then imply that e�1 = 0:4 and e�2 = 0:6. It fol-
lows, in this example, that aggregate emission, industry output and price
are unchanged. The sum of pro�ts increases, however. Before the changes
in standard, both �rms earn a pro�t of 1/60 each. After the changes, �rm
1's pro�t is 22/900 and �rm 2's pro�t is 112/900. Industry pro�t rises from
1/30 to 134/900. (End of example 2)

The above example was constructed in such a way that when the regu-
latory agency changes the emission standards, the total emission does not
change, while industry pro�t increases, because the low-cost �rm expands its
output, and the high-cost �rm reduces its output. In general, however, one
would expect that there are cases where the regulator must make a tradeo�
between pollution and pro�t. We now show that even in these cases, welfare
can be increased by setting non-identical �rm-speci�c standards.

Given ei, �rm i's marginal cost of production is ci + ai(ei)v
0(qi) Then, if

Q̂ is the Cournot equilibrium industry output, �rm i's equilibrium output
satis�es

q̂iP
0(Q̂) + P (Q̂) = ci + ai(ei)v

0(q̂i) � �i (70)

where �i is �rm i's marginal cost at a Cournot equilibrium. We will exploit
the following equilibrium relationship between ei and q̂i; for a given Q̂ :

ai(ei) =
P 0(Q̂)q̂i + P (Q̂)� ci

v0(q̂i)
(71)

That is,

ei(q̂i; Q̂) = a�1
i

"
q̂iP̂

0 + P̂ � ci
v0(q̂i)

#
(72)

Thus in equibrium, �rm i's abatement cost is

ai(ei)v(q̂i) =
[P 0(Q̂)q̂i + P (Q̂)� ci]q̂i

�(q̂i)
(73)
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where �(q̂i) is de�ned as the elasticity of v(qi): �(qi) = qiv
0(qi)=v(qi).

Equilibrium pro�t of �rm i is, from (68) and (73),

�̂i = q̂ifP̂ � cig+ f[�P̂
0]q̂i � (P̂ � ci)g[q̂i=�(q̂i)]

= (P̂ � ci)

�
1�

1

� (q̂i)

�
q̂i + [�P̂ 0]

q̂2i
�(q̂i)

(74)

Industry pro�t in equilibrium is

�̂ =
X
i

�̂i = Q̂2[�P̂ 0] bH +
X
i

(P̂ � ci)

�
1�

1

� (q̂i)

�
q̂i

where bH is a \modi�ed Her�ndahl index" of concentration:

bH =
X
i2I

q̂2i

�(q̂i)Q̂2

Using (69), (74), and (72), we can express social welfare as

cW = S(Q̂)�
X
i2N

fi(q̂i; Q̂) (75)

where

f(q̂i; Q̂) � �[P (Q̂)� ci]

�
1�

1

� (q̂i)

�
q̂i

+P̂ 0
q̂2i
�(q̂i)

+ �ei(q̂i; Q̂) (76)

For any given Q̂, the regulator can choose the q̂i's to maximize social
welfare subject to

P
i2I q̂i = Q̂: An interesting property of the social welfare

function (75) is that, under certain reasonable assumptions, it is convex in
the q̂i's, for a given Q̂: For example, we obtain this convexity property if
v(q) = q, a(e) = B � e where B > 0, and P (Q) = 1 � Q. We can now the
following proposition.

Proposition 5.1: When pollution abatement cost is of the form given
by (67), optimal standards satisfy the following properties:

(i) For a given level of industry output, Q̂, the optimal �rm-speci�c pol-
lution standards are

eei = a�1
i

"eqi eP 0(Q̂) + eP (Q̂)� ci
v0[eqi]

#
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(ii) (Unequal treatment of equals): Assume the social welfare func-
tion (75) is convex in the q̂i's. Then at any given Q̂; the optimum choice of
the q̂i's is achieved by giving non-identical treatments to identical �rms.

6 Concluding remarks

We have developed a general method of solving for optimal �rm-speci�c
measures for regulating a polluting oligopoly. The method applies to two
di�erent methods of regulating polluting �rms: �rm-speci�c Pigouvian taxes,
and �rm-speci�c standards. This method can also be applied to problems
such as optimal allocation of tradeable pollution permits, and delocation.
(See Long and Soubeyran, 2001b,c.)

Our method makes use of the properties of the inf-convolution approach
in mathematical programming, using duality. It has an elegant geometric
interpretation. Several important insights emerge. It is shown that optimal
�rm-speci�c regulations are partly driven by the motive to increase the indus-
try concentration, because increased concentration can enhance productive
eÆciency. However, tax revenue can be an important consideration, and
any increase in the marginal cost of public funds would lead to an increased
tax rate on the more eÆcient �rms. Whether the degree of concentration is
increased or decreased by regulation depends on the trade-o� between pro-
ductive eÆciency and the cost of public funds. Another interesting results is
that it may be optimal to give unequal treatments to ex ante identical �rms.

Our analysis can be extended to study the role of strategic trade policy in
the presence of a polluting international oligopoly. There are a number of in-
sightful papers that deal with this topics (Conrad (1993), Barrett (1994),
Kennedy (1994), Ulph and Ulph (1996), Ulph (1996a,b), Neary (1999)).
However, the possibility of unequal treatments of equals was not explored
in these papers, because the models did not allow for asymmetry within the
domestic industry, and �rm-speci�c taxes or standards were ruled out.

APPENDIX 1
Speci�c Pigouvian Taxes with Non-linear Costs

We now examine the the case where ci(zi) is strictly convex. To simplify
the exposition, we assume that the marginal cost of public fund is unity:
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 = 1. In this case, the functions fi(bqi; bQ) become

fi(bqi; bQ) = (di + Æi) bqi + uici

� bqi
ui

�
= gi(bqi)

The �rst stage of the game can be solved in two steps: In step (i), we solve

max
bqi

cW = F
� bQ��X

i2I

fi(bqi; bQ)
where

F
� bQ� � �S( bQ) + bQP ( bQ)�H (77)

subject to X
i2I

bqi = bQ
where bQ is given, and qi � 0. In step (ii), we determine the optimal bQ.

To solve step (i), we form the Lagrangian

bL = F
� bQ��X

i2I

fi(bqi; bQ) + �

"X
i2I

bqi � bQ#
or bL = F

� bQ�� � bQ +
X
i2I

h
�bqi � fi(bqi; bQ)i

We obtain the �rst order conditions

@fi
@bqi = di + Æi + c0i(ezi) = �

hence ezi = cxi (�� di � Æi)

where cxi (:) is the inverse function of c0i(:). Then eqi(�) = uic
x
i (� � di � Æi).

The equation
P

i2I eqi(�) = bQ determines a unique �( bQ).
The second step: We now determine the optimal bQ. We follow the duality

method used in Rockafellar (1970). Following Rockafellar, we de�ne the
conjugate function

f �i (�; bQ) = sup
bqi

h
�bqi � fi(bqi; bQ)i

31



then
f �i (�; bQ) = �eqi(�)� fi(eqi(�); bQ)

It follows that the optimal value of the Lagrangian (optimized with respect
to the bqi) is

eL( bQ) = hF ( bQ)� �( bQ) bQi+X
i2I

f �i (�( bQ); bQ)
Di�erentiating eL( bQ) with respect to bQ and equating it to zero yields

F 0( bQ)� bQ d�

d bQ � �( bQ) +X @f �i
@�

d�

d bQ +
X @f �i

@ bQ = 0 (78)

Since
@f �i
@�

= eqi(�) + ��� @fi
@bqi
�
@eqi
@�

= eqi(�)
(78) reduces to

F 0( bQ)� bQ d�

d bQ � �( bQ) +X
i2I

eqi(�( bQ)) d�
d bQ = 0

or
F 0( bQ)� �( bQ) = 0 (79)

This equation determines the optimal eQ.
Now, from (77)

F 0( bQ) = bP � (1� �)
h
� bP 0

i bQ (80)

From (79) and (80), bP � � = (1� �)
h
� bP 0

i bQ (81)

.
The di�erence between the optimal per unit tax and the marginal damage

is given by
� i � Æi = eP + eP 0eqi � [(di + Æi) + c0i(ezi)]

But, recall that
(di + Æi) + c0i(ezi) = � (82)
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Therefore
� i � Æi =

h eP � �
i
+ eP 0eqi (83)

From (81) and (83),

� i � Æi =
h
� eP 0

i eQ �(1� �)�
eqieQ
�

Thus the speci�c Pigouvian tax ti on pollution by �rm i is

ti �
� i
�i

= Æ +
1

"i
S 0( eQ) �(1� �)�

eqieQ
�

(84)

We conclude that (i) ti is greater, the greater is the marginal damage cost,
(ii) ti is negatively related to the weight attached to consumers' surplus, and
(iii) in equilibrium, among all �rms that have the same emission coeÆcient
"i, smaller �rms are taxed at a higher rate. This is because smaller �rms are
less eÆcient, and optimal policy seeks to reduce their outputs.

Optimal policy also favors �rms with more plants. To see this, consider
two �rms, say �rm i and �rm j with di = dj, Æi = Æj, and the same cost
function at the plant level, i.e., ci(:) = cj(:). Then, from (82), ezi = ezj. It
follows that ui > uj then eqi > eqj, and therefore, from (84), �rm i will pay
less tax per unit of output than �rm j. Intuitively, this is because, at the
�rm level, �rm i has a lower marginal cost curve. It is in this sense a more
eÆcient �rm, and accordingly it is better treated. (This happens only under
oligopoly; under perfect competition, both �rms would be taxed at the same
rate.)

Remark: (79) is a �rst order condition. The second order condition is

F 00 �
d�

d eQ < 0

where d�=d eQ is obtained from di�erentiating the constraint
P

i2I eqi(�( eQ)) =eQ X
i2I

deqi
d�

d�

d eQ = 1

and where deqi=d� is obtained from (82)

deqi
d�

=
ui

c00i (ezi)
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Thus
d�

d eQ =
X
i2I

ui
c00i (ezi) > 0

Now F 00 = (2��) eP 0+(1��) eP 00 eQ. Recall that 2 eP 0+ eP 00 eQ < 0 is the stability
condition for Cournot oligopoly. So if � is small enough, then F 00 < 0.

APPENDIX 2
The Duality Approach

The following is the outline of the duality approach contained in Rock-
afellar (1970). Consider the problem

max
xi

J = F (X)�
X
i2I

fi(xi; X)

subject to X
i2I

xi = X, xi � 0; i 2 I

where X is given, fi(xi; X) convex with respect to xi and di�erentiable with
respect to (xi; X), and proper ( fi(xi; X) is never �1, and is not identically
+1).

To solve this problem, de�ne the extended functions gi(xi; X) = fi(xi; X)
if xi � 0 and gi(xi; X) = +1 if xi < 0. Then we have the program

max
xi

J = F (X)�
X
i2I

gi(xi; X)

subject to X
i2I

xi = X, i 2 I

For agiven X; the Lagrangian of this problem is

L(x; �;X) = [F (X)� �X] +
X
i2I

[�xi � gi(xi; X)]

where x = (x1; :::; xn).
The saddlepoint duality theorem (see Rockafellar, 1970, pp 284-5) states

that ex = (ex1; :::; exn) is an optimal solution of the program if and only

if (i) given e�, ex maximixes the function L(x; e�;X), and (ii) e� minimizes
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L(ex(�;X); �;X) with respect to �, where ex(�;X) achieves the minimum of
L(x; �;X) for each given �.

The determination of exi(�;X) is given by the �rst order condition of the
program

sup
xi

[�xi � gi(xi; X)] = g�i (�;X)

g�i (�;X) is called the conjugate function of gi(xi; X). We have

@g�i
@�

= exi(�;X) +

�
��

@gi
@xi

�
@ exi
@�

= exi(�;X)

We also have

eL = L [ex(�;X); �;X] = [F (X)� �X] +
X
i2I

g�i (�;X)

and e�(X) = e� achieves the minimum of eL with respect to �. The �rst order
condition for that is X

i2I

@g�i
@�

(e�;X) = X

that is, X
i2I

exi(�;X) = X

This equation gives e�(X). The optimal exi follows: exi(X) = exi he�(X); X
i
;

i 2 I:
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