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1. Introduction

“Real life” investment games played between competing firms in oligopolistic markets

typically share the following characteristics. The environment (demand, information

and knowledge, supply of inputs) is uncertain in many ways and evolves over time. The

investment units come in finite discrete sizes, that is, investments are indivisible and

lumpy. Undoing an investment strategy is costly, that is, investments are in part irre-

versible. Capacity is built or technology adoption is achieved in multiple discrete and

separable steps engaged at different times without commitments as to future actions or

investment levels and timing. As capacity is built over many periods, firms keep pro-

ducing and competing, that is, their long term and short term decisions are intertwined.

Firms have some (endogenous) flexibility to adapt the course of their investment strat-

egy to exogenous changes in their environment as those strategies are implemented. At

the industry level, investments come in waves, with all firms investing simultaneously,

or in sequences, with firms investing at different times. Typically, investment (capacity

building) games eventually come to an end as the relevant market matures.

Although uncertainty is a common feature of the economic modeling of investment

games, other stylized facts are less frequently modelled. Typical models assume that

firms make a unique decision and must live with that decision afterwards. Such models

include models of technology adoption, models of entry, and numerous forms of two

stage models where firms first make and commit to long term decisions (stage one)

before competing in short term decisions (stage two).

Using a strategic real option approach, we develop a model of investment decision

making incorporating some of the stylized features identified above: uncertainty, indivis-

ibility, irreversibility, flexibility, dynamic choices of capacity building, no commitments

on future actions and strategies, endogenous end to the investment game, and both

investment waves and sequential investment timings over time.

The analysis of strategic considerations, in a game theoretic sense, is still in its in-

fancy and should be high in the real option research agenda.1 The real option approach

1Among investment evaluation methods, the real option approach is reaching advanced textbook
status and is rapidly gaining reputation and influence among practitioners. Although both academics
and practitioners warn against its sometimes daunting complexity, they also stress its unique ability
to take account of flexibility in managing ongoing projects, which is a significant but often neglected
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emphasizes the irreversibility, hence indivisibility, of investments.2 Indivisibility often

imply a limited number of players, hence imperfect competition. Yet, while it is often

stressed that the real option approach is best to analyze investments of strategic impor-

tance — the word ’strategic’ appears repeatedly in the real option literature — the bulk

of that literature involves decision makers confronted with a stochastic but non-reacting

nature rather than reacting competitors.3

The present paper extends the recent contributions in different ways while bringing

to bear the older literature on strategic investment,4 in addressing issues such as the

role of investment decisions in shaping the structure of a developing sector, the emer-

gence of preemption with rent equalization and dissipation5 versus tacit collusion with

rent maintenance, the existence or not of a first-mover advantage,6, and the effect of

strategic competition on real option exercise rules.7 We consider dynamic investments

without commitment in an homogeneous product duopoly where rival firms face market

development uncertainty and invest in lumpy increments of capacity. Typically, firms

hold investment options. We find optimal exercise rules and determine the value of the

corresponding options as well as of the firms holding them.

source of value.
2Henry (1974) and Arrow and Fisher (1974) were precursors of the approach. In his treatment of

the cost benefit analysis of a “new circumferential highway” around Paris, Claude Henry showed that
using the Simon-Theil-Malinvaud certainty equivalent approach “will here, systematically and unduly,
favor irreversible decisions, for example, destroying the forests and building the highway.”

3There are notable exceptions. Grenadier (1996) uses a game-theoretic approach to option exercise
in the real estate market; Smets (1995) provides a treatment of the duopoly in a multinational setup,
which serves as a basis for the oligopoly discussion in Dixit and Pindyck (1994, pp. 309-14); Lam-
brecht and Perraudin (1996) and Décamps and Mariotti (2004) investigate the impact of asymmetric
cost information on firms’ investment strategies; Baldrusson (1998) considers a duopoly model where
firms make continuous incremental investments in capacity showing that when firms differ in size ini-
tially, substantial time may pass until they are of the same size; Grenadier (2002) provides a general
solution approach for deriving the equilibrium investment strategies of symmetric firms, in a Cournot-
Nash framework, facing a sequence of investment opportunities with incremental capacity investments,
showing that competition may destroy in part the value of the option to wait; Weeds (2002), Huisman
(2001), Huisman and Kort (2003) study option games in a technology adoption context; Boyer et al.
(2004) study a duopoly with multiple investments under Bertrand competition; Smit and Trigeorgis
(2004) discuss different strategic competition models in the context of real options.

4Most notably Gilbert and Harris (1984), Fudenberg and Tirole (1985), and Mills (1988).
5As in Fudenberg and Tirole (1985).
6As in Gilbert and Harris (1984) or Mills (1988).
7The recent synthetic work of Athey and Schmutzler (2001) brings some generality and clarity to our

understanding of the role of investment in market dominance. They show in particular that, when firms
are farsighted and not committed to strategic investment plans, there is little hope to obtain definitive
predictions outside specific models.
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Our main results are as follows.

Two types of equilibria may arise. In preemption equilibria, which always exist,

firms invest at different market development thresholds, hence at different times. In

“tacit collusion” equilibria, which only exist under some conditions, firms invest at

the same market development threshold, hence simultaneously, and thus such equilibria

correspond to “investment wave” equilibria. In preemption equilibria, rents are equalized

and partly dissipated while in tacit collusion equilibria, firms exercise market power by

implicitly agreeing to postpone their respective investments in capacity building. If

firms have equal positive capacities, then the preemption equilibrium exhibits different

but uniquely determined market development investment thresholds, hence uniquely

specified but stochastic investment timings with either firm moving first. If firms have

different capacities and end game conditions are close to be met, the smaller firm acts as

first mover. When they exist, tacit collusion or investment wave equilibria are typically

numerous and Pareto superior to preemption equilibria from the firms’ viewpoint. Tacit

collusion is more profitable when firms have equal capacity in the sense that, when tacit

collusion equilibria exist, the joint investment (stochastic) date that maximizes combined

profits is an equilibrium if and only if firms are of equal size. Moreover, firms may be

able to tacitly collude at some stages of market development but not at others.

Low initial capacities are of particular interest in the case of emerging sectors. When

at least one firm has no capacity, preemption is the sole equilibrium as tacit collusion

cannot then be enforced since the firm the firm cannot be threatened with the loss of an

existing rent. Hence, even though the (preemption) equilibrium is characterized by the

presence of only one active firm at first, the initial development of the industry is highly

competitive as rents are equalized and partly dissipated. Paradoxically, once both firms

are active, the industry may become less competitive as tacit collusion equilibria become

possible.

It is well known that higher volatility raises the value of investment options because

a flexible decision maker can achieve higher exposure to upside movements and lower

exposure to downside ones. In a strategic setup, higher market volatility also favors also

the emergence of tacit collusion equilibria. Similarly, higher expected market growth as

well as a lower cost of capital favor the emergence of tacit collusion equilibria. Hence, our

results suggest that investment waves (joint investment timings) may signal the exercise
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of market power and are more likely when firms have similar positive capacities, market

growth is high, volatility is high, and/or interest rates are low.

After presenting the model, the competition framework, and the investment game in

Section 2, we proceed in Section 3 with the analysis of essentially all possible industry

development histories, more specifically with the explicit analysis of three different situ-

ations that essentially cover all relevant ones. We conclude in Section 4. Detailed proofs

are provided in the Appendix.

2. The model

2.1 Industry characteristics

We consider the development of an industry where demand is affected by multiplicative

random shocks. The inverse demand function at time t ≥ 0 is given by:

P (t,Xt) = YtD
−1(Xt), (1)

where Xt ≥ 0 is aggregate output, Yt ≥ 0 is a random shock, and D : IR+ → IR+ is the

non-stochastic component of demand.

Assumption 1

Demand D(·) is strictly decreasing, continuously differentiable and integrable on IR+ and
D(0) = limp↓0D(p) < ∞; the mapping x 7→ xD−1(x) is strictly concave on (0, D(0));

aggregate shocks (Yt)t≥0 follow a geometric Brownian motion:

dYt = αYtdt+ σYtdZt (2)

with Y0 > 0, α > 0, σ > 0, and (Zt)t≥0 a standard Brownian motion with respect to the

complete probability space (Ω,F , P ).8

Firms are risk neutral and discount future revenues at the same rate r > α. Investment

takes place in a lumpy way. Each capacity unit costs I, which is constant over time,

8Thus market demand is driven by consumers’ tastes for the output, not by replication of the initial
consumers as in Gilbert and Harris (1984).
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produces at most Q = 1 unit of output, does not depreciate, and has no resale value.

2.2 Competition, output, and investment

We consider a duopoly. At any date t, firms first take their investment decisions and

then compete in quantities (à la Cournot) subject to capacity constraints.9 Specifically,

within the instant [t, t + τ), the timing of the game is as follows: (i) first, each firm f

chooses how many capacity units νft to invest in, given the realization of the demand

shock Yt and the existing capital stocks (k
f
t , k

−f
t ); (ii) next, each firm selects an output

level within its capacity, xft ≤ kft + νft ; (iii) last, market price is determined according

to (1), with Xt = xft + x−ft .

The specification of inverse demand (1) implies that the short-run Cournot game

is independent of the realization of the current industry-wide shock. We can assume

that, in the absence of capacity constraints, this game has a unique equilibrium (xc, xc).

Let kc = dxce be the minimum capital stock required to produce xc. It is then easy to

check that, with given capacities kf ≤ k−f , only three Cournot equilibrium outcomes

can occur: (i) both firms are constrained, so that xf = kf and x−f = k−f ; (ii) the

smaller firm is constrained, so that xf = kf , while the bigger firm is not and reacts

optimally by choosing x−f on its reaction function; (iii) both firms are unconstrained,

so that xf = x−f = xc. The corresponding instantaneous profit of a firm with capacity

k when its competitor holds c capacity units can be conveniently denoted Ytπkc, where

πkc depends on capacities only.

2.3 Markov strategies

A key assumption of our model is that firms cannot (credibly) commit to future invest-

ment and output decisions. The game typically generates several investments occurring

in endogenous order at endogenous dates. There is no commitment by the firms with

respect to their role as first or second investor or to the number of units they will ac-

quire. The natural equilibrium concept here is the Markov perfect equilibrium (MPE),

in which firms’ investment and output decisions at each date depend only on the firms’

capital stocks measured in capacity units, (kf , k−f), as well as on the current level of

9See Boyer et al. (2004) for a related preemption model with instantaneous competition in prices
(Bertrand).
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the industry-wide shock y. This rules out implicit collusion between firms when decid-

ing on output: at each date, and given their current capacities, firms play the unique

equilibrium of the static Cournot game described above.

Our definition of Markov strategies and of the resulting payoffs is in line with the

Fudenberg and Tirole (1985) concept of mixed strategies for timing games in continuous

time. The main difference is that, while they focus on deterministic environments,

demand fluctuates randomly in our model.10 The basic idea is to construct an adequate

continuous time representation of limits of discrete time mixed strategy equilibria by

defining a strategy for firm f as a function sf specifying the intensity sf
νf
(kf , k−f , y) ∈

[0, 1] with which firm f invests in νf capacity units given the capital stocks (kf , k−f) and

the industry-wide shock Yt = y. Given a strategy profile (sf , s−f), Uf
(sf ,s−f )(k

f , k−f , y)

denotes firm f ’s expected discounted profit in state (kf , k−f , y).11 In the rest of the

paper, we will omit firm and strategy profile indices in the expression of value functions

when no ambiguity arises.

2.4 Firm valuation

Since (Yt)t≥0 is a time homogenous Markov process, an outcome may be described as

an ordered sequence of investment triggers together with the short-run instantaneous

profits of both firms Ytπkc and Ytπck between investments. Let yij (with yij = yji),

where i and j refers to the firms’ capacities immediately before Yt reaches yij for the

first time,12 denote the value of Yt that triggers a new investment when total industry

capacity is i+ j. If the game is over, then yij =∞.

10A precise definition of Markov strategies and payoffs under uncertainty can be found in Boyer et
al. (2004, Appendix A).
11The important intuitions that our paper will convey can be grasped in terms of pure strategies.

However, in symmetric cases, there will be situations where two pure strategy equilibria exist, where
either firm invests first and the other firm second, for identical payoffs. Then there is a possibility,
if firms use pure strategies, of both firms investing simultanously by mistake, a sort of coordination
failure. Indeed, a firm prefers to invest if its opponent does not but prefers not to invest if its opponent
does. Hence both firms wish to avoid the worst of all cases, namely simultaneous investments. Under
the foregoing definition of Markov strategies, strategies can be designed such that no entry mistakes
can occur. In the first symmetric MPE we construct in the Appendix, sf1(0, 0, y

P ) = s−f1 (0, 0, yP ) = 0,
where kf = k−f = 0, νf = ν−f = 1, and yP is the level of Yt that triggers the first firm investment in
the equilibrim. This acts as a correlation device: each firm is equally likely to invest in state (0, 0, yP ),
but the probability of simultaneous entry is zero. This formally jsutifies the usual less rigorous approach
consisting in determining at random a (lucky) first mover.
12Since capacity units do not depreciate, higher triggers along a given development path correspond

to higher industry capacity levels: yij ≤ ykc ⇔ i+ j ≤ k + c.
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Suppose Yt = y and let us consider, for simplicity, investments of one single capacity

unit only (ν = 1), as investments in multiple capacity units can be treated as one-

unit investments occurring at the same time. Let L (i, j, y) denote the current value of

the firm of capacity i if it carries out an investment immediately, while its opponent

has capacity j. Let F (i, j, y) be the current value of the firm of capacity i when its

competitor with capacity j carries out an investment immediately. Let S (i, j, y) denote

the current value of the firm of capacity i, with its competitor holding capacity j, if both

firms make a simultaneous investment at some future date when Yt reaches say yij.

The following lemma gives analytical expressions for the L, F , and S functions. The

expressions are divided into a first part corresponding to the current investment and a

second part corresponding to the continuation of the game. The latter part is not fully

specified at this stage; it will be determined recursively by backward induction, starting

from the ‘horizon’, defined in state space as the first (stochastic) time a situation (or

capacity combination) is reached such that it is certain that no more investment will

take place.

Lemma 1 let Yt = y. The value of the firm of capacity i, when it invests immediately

while the firm of capacity j does not, is given by the following, where k = i+ 1:

L (i, j, y) =
πkj
r − α

y − I +

µ
y

ykj

¶β ∙
c (k, j, ykj)−

πkj
r − α

ykj

¸

where β = 1
2
−α/σ2+

q
(α/σ2 − 1

2
)2 + 2r/σ2 > 1 and c (k, j, y) is the continuation value

of the same firm at the time of the next industry investment, if any.

Its value, when it stays put while its competitor of capacity j invests now, is given

by the following, where k = j + 1:

F (i, j, y) =
πik

r − α
y +

µ
y

yik

¶β ∙
c (i, k, yik)−

πik
r − α

yik

¸
.

Its value, when both firms invest simultaneously at some future trigger value yij, is
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given by the following, where k = i+ 1 and c = j + 1:

S (i, j, y) =
πij

r − α
y +

µ
y

yij

¶β µ
πkc − πij
r − α

yij − I

¶
+

µ
y

ykc

¶β ∙
c (k, l, ykc)−

πkc
r − α

ykc

¸
.

Consider the expression for L (i, j, y). The first part
πkj
r−αy − I gives the expected

net present value of the profit flows achieved by increasing capacity from i to k =

i + 1 at a cost of I, assuming that no more investment is made. The second part³
y
ykj

´β £
c (k, j, ykj)− πkj

r−αykj
¤
adjusts the first one for the effect of subsequent invest-

ments, that is for the (equilibrium) exercise by both firms of their investment options.

Indeed,
³

y
yij

´β
may be viewed as a discount factor defined over the state space rather

than the time space13 and the function c (k, j, ykj) is the continuation value function when

Yt = ykj.
14 The expressions for F (i, j, y) and S (i, j, y) can be similarly understood.

2.5 Endgame conditions

Although the investment game imposes no restrictions on capacities, we can characterize

endgame conditions: the investment game is over if and only if it is known with certainty

that no firm will ever invest in additional capacity. The following proposition gives two

conditions, one necessary, one sufficient, for the investment game to be over.

Proposition 1 The investment game is over only if (necessity) either condition A or

condition B is satisfied, implying that both firms hold a strictly positive capacity; more-

13The expression
³

y
yij

´β
gives the expected discounted value when Yt = y of receiving one dollar the

first time Yt reaches yij > y, the length of time necessary to go from y to yij being random. If there is
no subsequent investment, so that yij =∞, the second term in L vanishes.
14To emphasize that c is a continuation function by definition, L (i, j, y) can be written as

L (i, j, y) = −I +
"

πkj
r − α

y −
µ

y

ykj

¶β µ
πkj
r − α

ykj

¶#
+

µ
y

ykj

¶β
c (k, j, ykj) ,

where

∙
πkj
r−αy −

³
y
ykj

´β ³
πkj
r−αykj

´¸
is the expected present value of a random annuity Ytπkj lasting

between today (when Yt = y) and the random date at which Yt will reach ykj . Suppose that the
investment occurring at ykj is made by the firm with capacity j and no further industry investment
occurs afterwards. Then at ykj , the new profit flow of the firm of capacity k becomes πk(j+1)Yt and

c (k, j, ykj) is the expected present value of that profit flow, namely
πk(j+1)
r−α ykj . The value function

L (i, j, y) is then completely defined, provided the trigger value ykj has been determined: L (i, j, y) =

πkj
r−αy − I +

³
y
ykj

´β πk(j+1)−πkj
r−α ykj .
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over, the investment game is over if (sufficiency) Condition A is satisfied:

(A) Neither capacity constraint is binding in the short-run Cournot game, that is,

kf ≥ kc = min{k ∈ IN | k ≥ xc}, f ∈ {1, 2}.

(B) Both capacity constraints are binding in the short-run game and would remain

binding in case of a unit investment by any one firm.

Proposition 1 indicates (i) that no firm can keep its opponent out of the market in the

long run, and (ii) that a firm cannot use excess capacity in order to maintain a dominant

position in the long run.15 Condition (A) falls short of implying equal capacities for both

firms. However it implies that, if capacities are not equal at the end of the game, the

number of units used by each firm is the same. If capacities are not equal, some capacity

is idle.

Condition (A) is not necessary; however if it is not satisfied at the end of the game,

Condition (B) must hold. That condition pertains to tacit collusion. It describes a

situation where each firm could still profitably increase its capacity if its rival did not

react. For such a situation to last forever (game over), it must be the case that firms

restrict capacity, hence output, in equilibrium. Such an equilibrium can hold only if

any deviation is adequately punished. Condition (B) describes a situation where a firm

can inflict a punishment on its competitor if the latter deviates. If the former firm were

no longer capacity constrained following an investment by its opponent (Condition (B)

not satisfied), then it would not be able to retaliate to the deviation. It is then certain

that the opponent would invest at some date t. The ability to retaliate is however not

sufficient to sustain a tacit collusion equilibrium. We characterize below the conditions

under which the retaliatory power is sufficient to offset the gain from deviating. If the

firm to be punished is small, it does not lose as much from an increase in the capacity of

its opponent as if it were bigger. This implies that retaliation, hence collusion, is likely

15The conditions spelled out in Proposition 1 are not compatible with the situation found in Gilbert
and Harris (1984) where, in equilibrium, one duopolist concentrates the totality of industry capacity,
while the other firm holds no capacity. Their result can be traced to a technical assumption, claimed
to be “trivial in that both firms will earn zero profits on new investments in a preemption equilibrium”
(p. 206), that gives a first-mover advantage to one firm in order to rule out (mistaken) simultaneous
investments. The strategies and equilibrium concept defined above avoid the necessity of any asymmetric
treatment.
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to be easier between firms of similar size and explains why the investment game cannot

be over unless both firms hold strictly positive capacities.

In what follows, firm asymmetry can only take the form of differences in current

capacities and may be thought of as inherited from past moves in the industry devel-

opment game. As discussed above, Lemma 1 provides only a partial characterization of

value functions under alternative investment strategies. Completing the characterization

requires knowledge of the continuation function c (·) and the appropriate trigger values.
These can be determined when the game between the two firms is sufficiently near its

end, in the sense of Proposition 1. Once the continuation value function is known in such

situations, it is possible to characterize recursively the value function corresponding to

previous steps.

3. Industry development

Industry development proceeds by successive capacity acquisitions by one of the firms

or both. The particular demand function we use guarantees that the number of capacity

units that will eventually be installed is finite and that the industry development game

has an end. This is in contrast with most papers on related subjects (investment games;

R&D games, etc.) where it is assumed either that the players play only once or that the

game goes on indefinitely.

Industry development possibilities may be represented as a tree whose nodes give

the number of capacity units held by each firm (Figure 1). While the figure indicates

possible sequences of capacity investments, it does not provide any indication about the

speed at which investments occur and nodes are reached.16

16In particular this representation is compatible with a firm acquiring more than one unit simul-
tanously, or with both firms investing simultaneously, in which case no time is spent on intermediary
nodes.
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Figure 1: Industry capacity development tree

We characterize the capacity acquisition path and the competition intensity prevail-

ing at various stages of market and industry development: first, in the early stage when

firms hold no capacity (Case 1); second, at a later stage, when firms hold symmetric

(Case 2) or asymmetric (Case 3) capacities due to the unraveling of their respective

investment strategies. We first consider situations that are “near” the end of the game:

from the nodes considered, a limited number of investments will lead to a situation

where the investment game is over in the sense of Proposition 1. Once these investment

developments are characterized, the previous relevant investment histories can be ob-

tained by backward induction: a limited number of investments will lead to a situation

or node from which the (not necessarily unique) unraveling of the investment game has

been characterized till endgame conditions are met. Once we have characterized those

situations that are “near” the end of the game, we generalize the analysis (in section

3.4) to arbitrary nodes in the industry development tree. Hence, we virtually consider

all relevant cases as the path to such characterizations is clearly beaconed.
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3.1 Case 1: No existing capacity

We start with a situation where initial capacities are zero; let us assume that the mar-

ket is such that unconstrained firms would produce at most one unit each in Cournot

duopoly, that is:

Assumption 2 0 < xc ≤ 1.

Although this assumption allows the monopoly output to exceed unity, so that the

acquisition of more than one unit may be considered by any one firm, it also implies

that, if both hold one unit or more, the game is over by Proposition 1. Assumption 2

also implies that, whatever the (strictly) positive number of capacity units held by its

opponent, a firm obtains instantaneous profit Ytπ11 once it invests in one unit or more;

consequently it will typically not acquire more than one unit.

Therefore, the payoff from not investing immediately is (with π1ν = π11 by Assump-

tion 2)

F (0, 0, y) =

µ
y

y0ν

¶β µ
π11
r − α

y0ν − I

¶
,

where ν is the number of units acquired by the opponent before the firm acquires its

first and single unit. The stopping problem faced by the firm is then:

F ∗(0, 0, y) = sup
y0ν

"µ
y

y0ν

¶β µ
π11
r − α

y0ν − I

¶#
(3)

with solution:

y∗0ν = y∗01 =
r − α

π11
I

β

β − 1 , ∀ν ≥ 1. (4)

Knowing this, the value for the competitor of acquiring at least one unit immediately

at Yt = y, and any number of further units before Y reaches the threshold y∗01 can be

computed explicitly. For example if it acquires one unit immediately and abstains from

12



any further investment its value is, according to Lemma 1:17

L (0, 0, y) =
π10
r − α

y − I +

µ
y

y∗01

¶β
π11 − π10
r − α

y∗01, y < y∗01. (5)

where π11
r−αy

∗
01 = c (1, 0, y), since no more investment is forthcoming beyond y∗01 by Propo-

sition 1. Similarly, if the investment in the first unit is to take place in the future at

y00 > y, then the value of the firm is:

L(0, 0, y00) =

µ
y

y00

¶β µ
π10
r − α

y00 − I

¶
+

µ
y

y∗01

¶β µ
π11 − π10
r − α

y∗01

¶
. (6)

Its maximum L∗ (0, 0, y) with respect to y00 is reached at:

y L
00 =

r − α

π10
I

β

β − 1 . (7)

Figure 2 illustrates the functions L (0, 0, y), L∗ (0, 0, y) and F ∗(0, 0, y).

17We leave to the reader the straightforward task to adapt the formula and the rest of the argument
for any number of units acquired by the first investor before the other one invests at y∗01. For example if
the firm plans to acquire a second new unit at some y0, y ≤ y0 < y∗01, the candidate value for L (0, 0, y)

is π10
r−αy−I+

³
y
y0

´β h
π20−π10
r−α y0 − I

i
+
³

y
y∗01

´β
π21−π20
r−α y∗01, y ≤ y0 < y∗01 where π21 = π11 by Assumption

2. If this value is higher than (5), then it gives the correct expression for L (0, 0, y); if it is lower, then
(5) is the appropriate expression. Note that the number of candidates to try is low as it cannot exceed
the monopoly capacity under Assumption 2.
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Figure 2: Firm values under alternative strategies

It is straightforward to check from (3)—(6) that, within the interval (0, y∗01), there

exists a unique value yp00 such that for y < [>,=]yp00, L(0, 0, y) < [>,=]F (0, 0, y), with

the corresponding stochastic stopping time being τ p00 = inf{t ≥ 0 |Yt ≥ yp00}.

We now determine the firms’ equilibrium strategies before any firm has invested,

that is, in states of the form (0, 0, y). If y < yp00, investing is for both firms a strictly

dominated strategy while for y ≥ y∗01, delaying investment any further is also a strictly

dominated strategy. To determine the equilibrium outcome when yp00 ≤ y < y∗01, it is

helpful to consider what would happen if one of the firms were protected from preemption

and could thus choose its optimal stand-alone investment date as a monopoly.18 Given

a current industry-wide shock y, the maximal expected payoff that this firm could then

achieve by taking the lead is L∗ (0, 0, y). This is strictly higher than F ∗ (0, 0, y).19 In an

MPE, however, such a value gap cannot be sustained. If a firm anticipates that its rival

will first invest at yL00, then the former is better-off preempting the latter at y
L
00 − dy.

This is true for any y between yp00 and yL00. When the industry-wide shock Yt is equal

to yp00, the value of both firms is the same, so each firm is indifferent between investing

immediately and letting its rival invest while waiting to invest until Yt reaches y
∗
01, at the

18Katz and Shapiro (1987).
19Everything happens as if the firm is myopic and takes no account of the future entry of the follower.

This is is line with Leahy (1993): when computing its optimal stand-alone date, a myopic firm overstates
by the same amount the value of the investment option and the marginal benefit from investing, leaving
the investment rule unaffected.
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stochastic time τ ∗01 = inf{t ≥ 0 |Yt ≥ y∗01}. The following proposition is a transposition
of Fudenberg and Tirole (1985, Proposition 2A) in a stochastic context.

Proposition 2 (Preemption equilibrium) Under Assumptions 1 and 2, if Y0 ≤ yp00,

1. There exists only one MPE outcome of the investment game: one firm invests at

τ p00, while the other firm waits until τ ∗01 to invest; both times are stochastic.

2. Rents are equalized to the value of the second investor given by (3).

The preemption MPE is characterized by intense competition. The first capacity unit

is installed earlier than under protection from preemption since yp00 < yL00, reflecting a

partial dissipation of monopoly rents (Posner, 1975, Fudenberg and Tirole, 1987).

3.1.1 Socially optimal investment timings

It is more difficult to compare the MPE outcome with the social optimum. Specifically,

let k0 = dD(0)e be the minimum capital stock required to produce D(0). The social

planner’s problem is to find an increasing sequence of stopping times that solves:

sup
τ1≤···≤τk0

(
Ey

"
k0X
k=1

Z τk+1

τk

e−rtYt

Z k

0

D−1(q)d q

#)
,

where by convention τk0+1 =∞. Standard computations imply that it is optimal for the
social planner to invest in the first capacity unit when Yt reaches the investment trigger

yO such that:

yO
Z 1

0

D−1(q) dq =
β

β − 1 (r − α)I.

Clearly, yO < yL00. Since y
p
00 < yL00 as well, there is no obvious way to compare y

O and

yp00.

However, modifying slightly the model allows an unambiguous comparison between

the MPE outcome and the social optimum, thus identifying the key factors involved in

a general comparison. Indeed, suppose that the inverse demand curve is a step function,

D−1(Q) = D−1(dQe); because of the assumption of unit capacity increments, the steps
correspond to capacity levels, so that each capacity unit produces at full scale once
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installed.20 Then π10 = D−1(1) =
R 1
0
D−1(q) dq, so that yL00 = yO. It follows that

yp00 < yO, so that the first capacity unit is introduced too early in an MPE, relative to

the social optimum. This happens because rents accruing to each firm must be equalized

in an MPE, while, from a social point of view, each successive capacity unit yields less

value than the preceding one as the consumers’ marginal willingness to pay decreases. In

order for the first capacity unit to yield no more rent than the second unit in equilibrium,

the first investor must therefore waste resources to compensate for interim earnings so

that its value does not exceed that of the second investor.

The result that the first industry investment occurs earlier under duopoly than in

the social optimum does not depend on the market size assumption kc = 1. As π11 =

D−1(2) =
R 2
1
D−1(q)dq, the second investor introduces the second capacity unit at the

socially optimal date. Since it acts like a monopoly with respect to the market residual

demand and since it does not hold any capacity, it will invest as soon as the market is

able to support a second capacity unit. However, if the firm that makes the last industry

investment already held some capacity, it would postpone its investment in order not to

cannibalize its demand. We will show that this is indeed the case.

3.2 Case 2: Symmetric capacities

Let us now investigate the role of existing capacity, starting in this section with situations

where firms have identical capacities, as illustrated by the subgame starting at node (k, k)

in Figure 1. As in the previous subsection, we will assume that the firms hold a capacity

lower than the unconstrained short-run Cournot output, which implies that both firms

are initially capacity constrained and that a firm remains constrained if its opponent

invests:

Assumption 3 0 < xc − k ≤ 1

Assumption 3 is compatible with an unconstrained monopoly output exceeding k+1,

so that it does not rule out investments exceeding one unit, allowing a firm to get ahead

by more than one unit. It does imply that the end of the game is not too far in the

20The assumption D−1(Q) = D−1(dQe) reduces the consumer surplus by the triangles between the
initial inverse demand curve and the steps of the new inverse demand curve, located entirely below the
former. In an industry involving indivisible capacity units the same assumption of a stepwise demand
would be necessary to ensure that perfect competition coincides with the social optimum.
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sense that, by Proposition 1, the game is over once both firms have acquired at least

one more unit. To simplify exposition, we take k = 1. Then Assumption 3 implies that

π21 > π11, π22 > π12, and πν2 = π22 = π2ν, ∀ν ≥ 2.

When considering a new investment, firms will now take into account the conse-

quences on the profits they derive from their existing capacity. We will show that, as

a result of the cannibalism effect, tacit collusion equilibria may exist besides the pre-

emption equilibrium, provided that either late joint investment or no more investment

dominates preemption over the whole relevant market development range.

3.2.1 The preemption MPE

The investment game with symmetric capacities always has a MPE. Assume that one

of the firms has taken the lead by acquiring at least one new unit, bringing its total

capacity to ν ≥ 2. For its rival, whatever the number of units held by the first investor,
it is a dominant strategy by Assumption 3 to acquire one and only one unit at the

market development threshold determined by the following optimal stopping problem:

for y < y1ν ,

F ∗ (1, ν, y) = sup
y1ν

"
π1ν
r − α

y +

µ
y

y1ν

¶β µ
π22 − π1ν
r − α

y1ν − I

¶#
, (8)

that is, at:

y∗1ν =
r − α

π22 − π1ν
I

β

β − 1 . (9)

The situation is similar to the case with no initial capacity except that the trigger value,

at which the second investor invests, depends on the number ν of units held by the initial

investor. The higher ν, the earlier the second investor will invest because its profits π1ν

while waiting are lower the higher ν.

The firm that invests first, whether it acquires one single unit or more units, under-

stands all implications of its investment(s) on the behavior of its competitor, so that

L (1, 1, y) can be computed explicitly. For example if the early investor acquires only
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one unit, its payoff at the current level of y ≤ y∗1ν is, for ν = 1:

L (1, 1, y) =
π21
r − α

y − I +

µ
y

y∗12

¶β µ
π22 − π21
r − α

y∗12

¶
. (10)

As before, if the firm were able to choose the investment threshold in the absence of any

threat of preemption, the maximum L∗ (1, 1, y) with respect to y, for ν = 1, would be

reached at:21

yL11 =
r − α

π21 − π11
I

β

β − 1 .

But under a preemption threat, the firm cannot wait until Yt reaches y
L
1ν and invests

at trigger level yp1ν, at which rents are equalized. The following result then parallels

Proposition 2.

Proposition 3 (Preemption with equal capacities) Under Assumptions 1 and 3, the

investment game has a preemption MPE such that any one firm invests when Yt reaches

yp1ν while the other firm invests when Yt reaches y
∗
1ν.

In this equilibrium, the threat of preemption leads to rent equalization and thus to the

complete dissipation of any first-mover advantage. However, with positive capacities,

the preemption equilibrium may not be the sole type of MPE, as we shall now see.

3.2.2 Tacit collusion MPE

The fact that the firms hold strictly positive capacities gives rise to the possibility of

a different type of MPE . The strategies involved consist in coordinating on a random

joint investment date or in abstaining from investing forever. We call these strategies

tacit collusion strategies as they imply an increase of firms’ values above the preemption

equilibrium level. Note that short-run output decisions are still determined according

to Cournot competition. Collusion is achieved only through firms’ investment strategies

and not through production decisions. This implies that the only way firms can sustain a

21Again the reader can adapt the candidate expressions for L (1, 1, y), with y∗1ν given by (9), for any
new capacity purchase exceeding one unit (ν > 2). The highest such candidate gives L (1, 1, y). It is
certain to exist because, as shown in the proofs, the candidate for L corresponding to ν = 1 exceeds
F ∗ (1, 1, y) for some range of y values lower than y∗12.
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tacit collusion outcome is by investing simultaneously, rather than at different times, and

by doing so at a threshold ys12 exceeding y
∗
12. Indeed if one of the firms were to invest in a

second capacity unit at some y < y∗12, the latter’s unique optimal continuation strategy

would be to invest at y∗12. This can be a MPE only if y = yp12 as shown in the analysis of

the preemption MPE characterized above. Since simultaneous investments of one unit

imply by Assumption 3 that both firms then hold more capacity than the unconstrained

Cournot output, they will not acquire more than one unit. Furthermore the game is

then over by Proposition 1.

Suppose that the firms could commit to invest simultaneously at some random future

date or to abstain from investing forever. Given a current industry-wide shock y, the

expected payoff that they could achieve in this way is, according to Lemma 1:

S (1, 1, y) =
π11
r − α

y +

µ
y

ys11

¶β µ
π22 − π11
r − α

ys11 − I

¶
. (11)

If π22 > π11, S (1, 1, y) has a maximum with respect to ys11, denoted S∗ (1, 1, y), at ys∗11:

ys∗11 =
r − α

π22 − π11
I

β

β − 1 > y∗12 =
r − α

π22 − π12
I

β

β − 1 , (12)

with τ s∗11 = inf{t ≥ 0 |Yt ≥ ys∗11} as the corresponding investment (stochastic) timing. If
π22 ≤ π11, S (1, 1, y) attains a maximum of π11

r−αy by letting y
s∗
11 =∞ (tacit collusion by

inaction), in which case τ s∗11 =∞. Clearly if L (1, 1, y) exceeds S∗ (1, 1, y) at any y ≤ ys∗11,

tacit collusion is not an equilibrium since each firm then has an incentive to deviate and

invest earlier. Hence,

Proposition 4 (Tacit collusion with equal capacities) Under Assumptions 1 and 3, if

Y0 ≤ yp11,

1. A necessary and sufficient condition for the existence of a tacit collusion MPE

is L (1, 1, y) ≤ S∗ (1, 1, y) ∀y < y∗12. If this inequality is strict for all such y,

there exists a continuum of tacit collusion MPE, indexed by their joint investment

triggers ys11 in a range [y
s, ys∗11], where y

∗
12 ≤ ys ≤ ys∗11.

2. Rents are equalized in each tacit collusion MPE and exceed the preemption MPE

rents; the Pareto optimal tacit collusion MPE corresponds to the joint profits max-
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imizing investment rule under the constraint that firms invest simultaneously if

they do.22 In this joint-profit maximization tacit collusion MPE, each firm invests

in one capacity unit with intensity:

sf1(1, 1, y) = s−f1 (1, 1, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if y ∈ [0, ys∗11),

1 if y ∈ [ys∗11,∞).

3. If π22 > π11, the Pareto optimal tacit collusion MPE has both firms investing when

Yt reaches y
s∗
11; otherwise it is such that neither firm ever invests.

Propositions 2 and 4 highlight the role of existing capacity in the exercise of market

power. A firm that holds no capacity has no incentive to restrain output and thus tacit

collusion cannot exist if one firm has zero capacity (Proposition 2).23 Moreover, the mere

existence of an incentive to tacitly collude is not enough to guarantee that tacit collusion

is sustainable: firms must also follow investment strategies such that a deviation from

the tacit collusion outcome would trigger a reaction leading to a new equilibrium with

a lower value for the deviating firm. This “punishment” is made difficult because our

assumption of a Cournot production equilibrium in any period implies that restraining

output can only be achieved by postponing capacity investments in the industry. It

follows in particular that the joint investment trigger in any tacit collusion equilibrium

must be higher than both triggers in theMPE characterized in Proposition 3. Moreover,

a firm becomes more vulnerable to a deviation by its competitor once the trigger value

for the first investment in the preemption equilibrium has been crossed: once y > yp11 and

until y reaches the threshold for the second investment, a deviation yields the defector a

higher rent L (·) than the rent F ∗ (·) obtained by its competitor who would then invest
optimally at y∗12. Therefore, the rents S

∗ (·) under tacit collusionMPEmust be attractive
enough (Proposition 4(b)) to beat such defection at any level of y preceding y∗12.

22Absent that constraint, joint profits maximization would involve sequential investments. As men-
tioned above, such an investment sequence cannot be sustained as an MPE outcome of our duopoly
model, as it would generate a strictly higher expected payoff for the first investor and would therefore
be subject to preemption.
23In the language of contestability, this says that the level of contestability is stronger when the

contesting firm is not yet active.
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Proposition 4 provides a necessary and sufficient condition for tacit collusionMPEs to

exist. This condition implies restrictions on the components of L (1, 1, y) and S∗ (1, 1, y):

first, the four profit values πij determined by the non-stochastic component of demand

D (·) under Cournot competition; second, the parameters underlying real option values,
that is, the value of β as determined by the discount rate r as well as the drift α and

the volatility σ of the stochastic demand shock process.

Let eΛ (β, I) = {(π11, π12, π22, π21) | E (y; I, β) = S∗ (1, 1, y)− L (1, 1, y) ≥ 0 ∀y < y∗12}
(eΛ (β, I) is the set of πij quadruples for which tacit collusion equilibria exist given β and
I); the following proposition states that this set is non empty, is independent of I (that

is, eΛ (β, I) = Λ(β)), and is larger in industries with higher volatility, faster growth and

lower cost of capital (that is, Λ (β0) ⊂ Λ (β) iff β < β0).

Proposition 5 (Tacit collusion: existence) Under Assumptions 1 and 3:

1. There exists a set of market parameters guaranteeing the existence of tacit collusion

MPE.

2. This set is independent of the investment cost I of a capacity unit.

3. It is larger, the higher demand volatility, the faster market growth, and/or the

smaller the discount rate.

As we know from the real option literature, increased volatility raises the option value of

an irreversible investment under no preemption threat: the firm increases its investment

threshold to reduce the probability that the stochastic process reverts to undesirable

levels after the firm has invested. The flexibility to do so increases the value of the

firm; the more so, the higher the volatility. Such an effect is also present here. But

there is another effect of volatility: an increase in volatility raises firm values more

in a tacit collusion equilibrium than in the preemptive equilibrium, thus favoring the

emergence of the former. The reason comes from both timing and discounting. Tacit col-

lusion equilibria involve higher investment thresholds (longer delays), while an increase

in volatility amounts to a lower discount rate (recall that β decreases with volatility

σ) because it raises the probability that a given threshold value of y be reached in any

given amount of time. Although instantaneous profits are always independent of β, the

discounted value of the profit flows corresponding to each equilibrium does depend on
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β: the (state space) discount factors used in (11) and (10) are respectively
³

y
ys11

´β
and³

y
y∗12

´β
and since ys11 > y∗12, the former increases more than the latter when β decreases,

that is, when volatility increases. To put it differently, the benefits of restraining sup-

ply through delaying investments occur in a distant future, that is, in a higher state of

market development, while the benefits from deviating occur in the immediate future.

Other things equal, more volatility gives relatively more weight to the former than to the

latter, contrary to conventional wisdom whereby increased volatility, because it warrants

a risk premium, amounts to an increase in the discount rate.

The intuition for the role of the (time) discount rate and the market growth rate is

similar: a lower discount rate favors future payoffs and a larger expected growth rate

raises future prospects relative to immediate ones. Hence, both favor the emergence of

tacit collusion equilibria through a lower β.

3.3 Case 3: Different capacities

While we have shown that existing capacity is a necessary condition for tacit collusion

between identical firms, capacity is also often said to play a role as a barrier to entry and

thus can be used as a way to acquire and maintain a dominant position or a first-mover

advantage. We assume now that firms differ in their initial sizes. Referring to Figure 1,

we now investigate investment subgames such as the game starting at node (k0, k0 + 1)

and contrast them with sub-games such as the game starting at node (k, k) analyzed in

the previous section. We showed that, with symmetric capacities, there are two possible

types of MPE : the preemption equilibrium and the tacit collusion equilibrium. The

former always exists, is highly competitive and involves rent equalization. The latter

exists under some conditions, provides higher rents to both firms, and also involves rent

equalization. We will show that some of these characteristics are modified under asym-

metric capacities: initial capacity asymmetry prevents rent equalization in equilibrium

and makes collusion more difficult in the sense that joint profits maximization is not

compatible with a MPE.

Without loss of generality, suppose that one firm holds k0, k0 ≥ 1, capacity units

while the other holds k0 + 1 units, that k0 = 1 to facilitate exposition, and that

Assumption 4 0 < xc − k0 ≤ 2.
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The unconstrained Cournot output is then xc ≤ 3, either 1 < xc ≤ 2 or 2 < xc ≤ 3,
with π31 > π21, π2ν > π1ν, ∀ν.

Consider first the case where 1 < xc ≤ 2. The larger firm holding two units may

be capacity constrained when the smaller firm holds only one unit but it will become

unconstrained if the smaller firm invests in a second capacity unit. Thus, by Proposition

1, the investment game cannot be over at node (1, 2) . If the smaller firm invests, both

firms then hold enough capacity to produce xc and the game is over by Proposition 1.

Moreover, the smaller firm benefits more from acquiring one new unit than the bigger

firm does and this benefit from investing is positive at high enough levels of Yt. Therefore,

the smaller firm is the sole investor in equilibrium and the game ends when both firms

hold 2 units of capacity.

Consider now the case where 2 < xc ≤ 3. Both firms hold a lower capacity than
the unconstrained short-run Cournot output so that both are initially constrained and

each firm remains constrained if its opponent invests. By Proposition 1 this may be the

end of the game, although not necessarily so; this possibility will be considered further

below. Two alternative candidate preemption equilibria may be considered: one,where

the bigger firm invests first and the smaller firm acts accordingly; another, where the

roles are reversed. The corresponding values of the bigger and the smaller firm, acting

as first or second investor are respectively L (2, 1, y) and F ∗ (2, 1, y) for the bigger firm,

and L (1, 2, y) and F ∗ (1, 2, y) for the smaller firm.24 When the smaller firm invests first,

node (2, 2) is reached and both firms remain capacity constrained, which is the situation

we analyzed in subsection 4.2: both firms then hold 2 units of capacity and assumption

3 holds with k = 2, so that Propositions 3, 4, and 5 apply. The continuation of the

game is then known and L (2, 1, y) and F ∗ (1, 2, y) can be computed.25 If the bigger firm

invests first, then it is a dominant strategy for the smaller firm to do invest at some finite

future level of Yt, since π13 < π23 < π33 as the larger firm must accommodate (Cournot

equilibrium). It is then straightforward to obtain F ∗ (2, 1, y) and L (1, 2, y) .

We will show that, unlike the case with symmetric initial capacities, the next invest-

24Explicit expressions are given in the proof of Lemma 2. As in previous cases, it is tedious but
conceptually easy to check whether the first mover acquires only one, or more, new capacity units
before its rival invests. We treat the case where the first mover acquires only one extra unit here.
25If tacit collusion MPE exist besides the preemption equilibrium, we assume that the firms reach the

tacit collusion MPE that maximizes joint firm value under the constraint of simultaneous investment.
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ment is undertaken by the smaller firm in any preemption equilibrium. In order to prove

that result, we need the following lemma.

Lemma 2 If L(2, 1, y) > F ∗(2, 1, y) for some y < y∗13, then there is exactly one value

yp12 ∈ (0, y∗13) such that L(2, 1, yp12) = F ∗(2, 1, yp12) and L(2, 1, y) < F ∗(2, 1, y) for y < yp12.

The lemma indicates that, by investing at y = yp12, the smaller firm leaves the bigger

firm indifferent between investing immediately or waiting. Furthermore we show in the

proof of the next proposition that, at y = yp12, the smaller firm strictly prefers investing.

Also, at any other relevant level of y, the gain for the bigger firm from investing first is

smaller than the gain for the smaller firm to do so. These results imply that the sole

preemption equilibrium is one where the smaller firm catches up. Trivially, if the bigger

firm finds unprofitable to invest, then the smaller firm can invest at its stand-alone date

y∗12 without worrying about preemption.

Proposition 6 (Preemption with different capacities) Under Assumptions 1 and 4,

1. There exists a unique preemption equilibrium, where the smaller firm invests when

Yt first reaches min {yp12, y∗12}.

2. In this preemption equilibrium, the smaller firm enjoys a strictly positive rent

from investing first as L (1, 2, yp12) − F ∗ (1, 2, yp12) > 0, while the bigger firm is

either indifferent between investing immediately and waiting, or prefers waiting as

L(2, 1, yp12)− F ∗(2, 1, yp12) ≤ 0.

3. Once node (2,2) is reached, Proposition 3 applies, mutatis mutandis.

In the preemption equilibrium the laggard not only catches up but also enjoys an ad-

vantage in terms of value. The reason is not because the laggard is in a better position

to avoid immediate cannibalism: although the drop in revenues from existing capacity

is indeed smaller for the smaller firm when industry output increases, the drop in price

is the same, whichever firm invests. Thus the source of the first-mover advantage must

be found in future decisions rather than current effects. If the bigger firm were investing

first, the other firm could plan its own investment at its stand-alone date. Having less

to loose from the cannibalism effect, it would invest earlier in the future than a bigger
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firm would. This reduces the advantage enjoyed by its bigger opponent from taking the

lead.

The preemption equilibrium of Proposition 6 always exists and it is unique in the

class of equilibria involving investment by both firms at different dates or investment

by one firm only. As with equal capacities, there may exist another class of equilibria,

tacit collusion equilibria, involving simultaneous investment or inaction by both firms.

The next proposition shows that, as with equal capacities, higher volatility and faster

growth make tacit collusion MPE more likely.

Proposition 7 (Tacit collusion with different capacities) Under Assumptions 1 and 4,

1. If π32 − π22 = 0: no tacit collusion equilibrium exists.

2. If π32 − π22 > 0: the set of market parameters ensuring the existence of tacit

collusion MPE becomes larger, the larger demand volatility is, the faster market

growth is, and/or the smaller the discount rate is.

3. Joint-profits maximization is not compatible with equilibrium.

As discussed in the case of equal initial capacities, tacit collusion involves postponing

capacity investments in order to restrain output. Benefits from tacit collusion arise in

a more distant future than benefits from taking the lead. Consequently the existence

of a tacit collusion equilibrium rests on conditions under which the future weights rela-

tively more, either because of significant market growth, or because of high volatility, or

because of a low discount rate, as previously. However tacit collusion is less attractive

when firms hold different capacities since joint profit maximization is not compatible

with equilibrium: being different, firms prefer different thresholds for simultaneous in-

vestment and the smaller firm would deviate (invest earlier) from a strategy of joint

investment at the joint profit maximizing threshold.

3.4 Generalization

We have considered explicitly three cases in this section: no initial capacity (0, 0), equal

initial capacities (k, k) and different initial capacities (k0, k0+1), each with an assumption

on the maximum market size limiting the number of possible remaining investments (in
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the sense of Proposition 1): 0 < xc ≤ 1 for the (0, 0) case; 0 < xc ≤ 2 for the (k, k) case
(taking k = 1); and 0 < xc ≤ 3 for the (k0, k0 + 1) case (taking k0 = 1). The three cases
cannot be viewed as particular subgames of a wider game because these assumptions

differ from one another. Let us now relax assumptions 2 and 3 keeping only Assumption

4 with k0 = 1. The entire game can be solved using the above results.

This is illustrated in Figure 3 giving all possible capacity combinations if the market

is such that xc ≤ 3 and km ≤ 4. Since the game is symmetric we represent only com-
binations where Firm 1 is at least as big as Firm 2. Any node may be considered as

initial node for a subgame. However we are interested in industry development, that is

the game that starts at (0, 0) with y low and we will focus on equilibrium paths for that

game. This eliminates all capacities in excess of the monopoly capacity.26 Nodes that

are necessarily endgame nodes, according to Proposition 1(A), and at which no firm

holds more than the monopoly capacity, are represented with square brackets in the fig-

ure. Other possible endgame nodes, in the sense of Proposition 1(B), are denoted with

curly brackets; they correspond to tacit collusion situations, in the sense of propositions

4, 5, and 7. Equilibrium steps are indicated by single arrows in case of single moves

(preemption or stand alone) or double arrows in case of simultaneous moves (collusion).

A question mark next to an equilibrium step indicates the corresponding step is not

necessarily an equilibrium.

26For a linear inverse demand curve P =
¡
1− X1+X2

8

¢
Yt, x

c = kc = 3 and the maximum monopoly
capacity is km = 4.
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(4, 0)

&

(3, 0) (4, 1)

& &

(2, 0) (3, 1) (4, 2)

& & &

(1, 0) {(2, 1)} ⇒? (3, 2) [(4, 3)]

% & % & % &

(0, 0) {(1, 1)} ⇒? {(2, 2)} ⇒? [(3, 3)]

{(., .)}: potential endgame; ⇒?: potential tacit collusion MPE branch;
[(., .)]: endgame (if reached); %: stand alone or preemption MPE branch.

Figure 3: Complete industry development game when xc = 3

The subgame starting at node (2, 2) satisfies Assumption 3 for k = 2. It admits a

preemption MPE described in Proposition 3 leading to an end at [3, 3]. As described

in Propositions 4 and 5 and denoted by the double arrow with a question mark, the

subgame starting at (2, 2) may also have tacit-collusion MPE’s. In that case the end is

either at (2, 2) or at (3, 3) and the corresponding firm values are equalized, but higher

than in the preemption MPE.

Trivially subgames starting at (3, 0), (3, 1), or (3, 2) end up at [3, 3] as the bigger

firm is then either passive in which instance the smaller firm invests at its stand-alone

thresholds, or is preempted by the smaller firm in MPE.27 Similarly subgames starting

at (4, 0) or (4, 1) end up at [4, 3].

27For example, consider the possible alternatives from (3, 0): either the bigger firm invests first,
leading to (4, 0) and a continuation with the small firm investing at its stand-alone thresholds until
[4, 3] is reached; or the small firm invest first, leading to (3, 1), (3, 2), and (3, 3), or to (3, 1), (4, 1), (4, 2)
and (4, 3). Two conditions are necessary for the first alternative to be a MPE: first the monopoly tenure
of the big firm on its fourth unit must be sufficiently long to earn back the investment cost I on the
unit. Second the small firm must not invest before the bigger one. Adapting the proof of Proposition 6
where it is shown that the smaller firm invests first in preemption MPE, it can be shown that the first
condition is violated if the second one is satisfied.
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The Subgame starting at node (2, 1) is studied in propositions 6 and 7. The preemp-

tion path leads to (2, 2) for a possible end of game at (2, 2) or continuation to (3, 3),

whether directly in collusion MPE, or via (3, 2) in preemption MPE. There may also

exist a collusion path to (3, 2) and (3, 3).

The subgame starting at (1, 1) has not been studied for xc ≤ 3 but only for xc ≤ 2.
However, now that its two possible continuations, via (2, 1) or via (2, 2), are known,

Propositions 3, 4, and 5 may be adapted accordingly. Precisely suppose that the contin-

uation of the game follows the preemption path (1, 1)− (2, 1). When applying Lemma
1 to evaluate L (1, 1, y), one must substitute for the continuation value c (2, 1, y). If the

next equilibrium segment is the preemption segment (2, 1)− (2, 2), this is F ∗ (2, 1, y) as
given in the proof of Lemma 2; similarly the expression for F ∗ (1, ν, y) , ν = 1, given by

(8) for xc ≤ 2 must be replaced by the expression applying when xc ≤ 3, as provided
in the proof of Lemma 2. Alternatively, if the next equilibrium segment is the tacit

collusion segment (1, 2)− (2, 3), then c (2, 1, y) is equal to S (2, 1, y) given in the proof of
Proposition 7. The qualitative results are unchanged. That is the subgame starting at

(1, 1) always admits a preemption MPE via (2, 1) and (2, 2); a collusion equilibrium via

(2, 2) may exist depending on considerations discussed in Proposition 5. In both cases

the continuation is known and the game ends at (2, 2) or (3, 3). If a collusion MPE

exists for the subgame starting at (2, 1), Proposition 7 indicates that it does not exhibit

rent equalization. Then by the standard preemption argument used repeatedly in this

paper, a preemption MPE exists at node (1, 1) where the first investor invests at such a

threshold that firms values are equalized: L (1, 1, y) = F ∗ (1, 1, y).

Comparing the subgames starting at (1, 1) and at (2, 2) we note that a preemption

equilibrium always exists and collusion equilibria may exist. However the game starting

at (1, 1) may also involve collusion from (2, 1) to (3, 2) unlike the game starting at (2, 2)

where collusion at (3, 2) is not possible. This raises the issue of multiple equilibria. We

have shown however that firm values are higher under collusion than under preemption

in the game starting at (2, 2). Although we do not provide a formal proof, this is also

likely to be the case in the subgame starting at node (1, 1); Equilibria can probably be

Pareto ranked. In any case, if tacit collusion from node (2, 1) is a possible MPE, it leads

to (3, 2). By Proposition 1, this cannot be the end of the game; it is a dominant strategy

for the smaller firm to acquire one further unit and for the bigger one to abstain so node
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(3, 3) is reached. By Proposition 1, this is the end of the game, with both firms holding

equal capacities.

Turning to the subgames starting at (2, 1) and (1, 1), it can be shown that the small

firm invests first from (1, 0) or from (2, 0).28 Finally, considering the initial node (0, 0)

it is now trivial to adapt Proposition 2 replacing the continuation values corresponding

to the initial Assumption 2 with the equilibrium values for the game starting at (1, 1)

under the new assumption xc ≤ 3. A unique preemption MPE leading to (1, 1) via (1, 0)
exists for each possible continuation at (1, 1); several MPE continuation may exist from

that node on, all leading to equal size firms at the end of the game, as indicated in

Figure 3 and further discussed in the conclusion below.

Thus the complete game starting at (0, 0) with y small and under assumption xc ≤ 3
can be solved entirely following the procedure just described. Further generalization to

higher maximum industry size would not affect the qualitative properties of the model,

which we summarize in the next section.

4. Conclusion

We characterized the development of a stochastically growing industry where duopolists

make irreversible lumpy investments in capacity units without commitments regarding

their future actions and make optimal use of their flexibility to adapt to the stochastic

evolution of the market. The capacity unit never becomes small relative to the market

despite unbounded market development, so that there is an end to the investment game.

We found that the early phase of development is characterized by intense competition:

while only one firm is active, competition is fierce as the unique equilibrium is the

preemption equilibrium. This competition intensity causes the first industry investment

to occur earlier than would be socially optimal.29 This deadweight loss is inevitable

as the rents of both firms must be made equal, no matter what market volatility and

growth are. The empirical implication of this result is that the first entrant ends up

28The proof is similar to that sketched in Footnote 27.
29In a setup anologous to natural monopoly, that is, if the cost of acquiring the next unit is decreasing

in the number of units already held by a firm, this effect would be galvanized as the entrant would have
to enter sufficiently early and waste enough resources to dissipate a monopoly rent that would be enjoyed
forever. Only then would its competitor be indifferent between entering or abstaining from producing
forever.
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facing riskier returns and a higher probability of bankruptcy than socially optimal. This

happens even if it is known that the market will develop over the long run. Intense

competition destroys value in the early phase of market development as the preemption

motive overwhelms the option value.

The smaller firm eventually catches up to the larger one as a firm cannot durably

keep its opponent at bay by holding as many capacity units as the market can bear.30

Moreover, tacit collusion equilibria may exist when both firms hold positive capacity;

they take the form of postponed simultaneous investment by both firms. Such equilibria

are more likely to emerge in highly volatile and/or faster growing industries. This effect

of volatility is new to the literature. The conventional real option result that high

volatility delays investment is reinforced by the fact that higher volatility may allow

a switch from the preemption equilibrium to a tacit collusion equilibrium involving

further delayed investment and higher firm values. Tacit collusion requires simultaneous

investment by both firms. When firms are of equal size, this is compatible with joint

profit maximization; but when firms differ in size, the simultaneous investment threshold

that maximizes joint profits is beyond the level that maximizes the expected value of the

smaller firm. Hence tacit collusion is more attractive for firms of equal size.31 Traditional

measures of competition may be deceiving: competition is more intense when one single

firm is active, as preemption is then the sole equilibrium, while tacit collusion is more

likely when firms are both active, of equal size, and the market develops quickly, with

much volatility, under low interest rates or cost of capital.

30Possible sources of first-mover advantage or rationale for a dominant position have been considered
repeatedly in the literature. In Stiglitz and Dasgupta (1988), the fact that contesting a dominant
firm is costly secures the latter’s dominant position. Although investment is costly in our model, this
argument does not apply because the market develops, so that competition is not only over current sales
but also over the next capacity investment. No firm enjoys any cost advantage over that investment. In
dynamic situations - patent races or investment games - the issue has often been whether an exogenous
advantage in terms of timing could generate rents. In Gilbert and Harris (1984) this does not prevent
rent dissipation. In Mills (1988), the exogenous ability to move first can be used to make a costly
preliminary investment which works as a threat that keeps the rival at bay and thus generates rents
for the first mover. Similarly, in patent race games, Fudenberg et al. (1983) and Harris and Vickers
(1985) have established that when a firm exogenously gets an arbitrarily small head start, there is a
unique perfect Nash equilibrium in which the firm with the head start surely wins. In the present paper,
differences between firms can only result from past capacity investments. It is rather remarkable that
being big is not like enjoying a head start in a race; quite the contrary, being big makes the threat of
early subsequent investment less credible, which implies that, in a preemption equilibrium with firms
of different sizes, it is the smaller firm that moves and invests first.
31This further suggests that explicit coordination, such as alliances, acquisitions and mergers, may

be more valuable (more attractive), the more unequal the firm sizes are.
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Appendix: Proofs

Proof of Lemma 1. Let Yt = y. The value of a firm at date t is the expected present
value of its profits over the periods between investments by either firms, minus the
present value cost of the investments made by the firm. In the case of a firm of capacity
i that invests immediately, at t, while its opponent holds j units and does not make any
investment at t,

L (i, j, y) = Ey

½Z τkj

t

e−rsπkjYsds+ e−rτkj
£
c
¡
k, j, Yτkj

¢¤¾
− I

= Ey

(Z ∞

t

e−rsπkjYsds−
Z ∞

τkj

e−rsπkjYsds+ e−rτkj
£
c
¡
k, j, Yτkj

¢¤)
− I,

where τkj is the random time, possibly infinite, at which some further investment occurs.
The profit flow πkjYs replaces πijYs at t. If it is altered by some new investment by either
firm later on, at τkj , the continuation function c

¡
k, j, Yτkj

¢
accounts for the new state.

The time homogeneity of (Yt)t≥0 and the strong Markov property for diffusions imply
that, for all y ≥ 0,

L (i, j, y) =
πkj
r − α

y − I +Ey

½
e−rτkj

∙
c
¡
k, j, Yτkj

¢
− πkj

r − α
Yτkj

¸¾
.

We are interested in stopping regions of the form [ykj,∞). For any ykj > 0, let τ (ykj) =
inf {t > 0 | Yt ≥ ykj}, so that Yτ(ykj) = ykj P − a.s.; then L (i, j, y) may be rewritten as:

L (i, j, y) =
πkj
r − α

y − I +Ey
©
e−rτ(ykj)

ª ∙
c (k, j, ykj)−

πkj
r − α

ykj

¸
. (A.1)

Following Harrison (1985, chapter 3), the Laplace transform Ey
©
e−rτ(ykj)

ª
is
³

y
ykj

´β
for

any y ∈ [0, ykj). Substituting into (A.1) yields the formula for L (i, j, y) given in the
Proposition. The other expressions are obtained in a similar way.

Proof of Proposition 1.

A strictly positive capacity is necessary. Suppose one firm has zero capacity. Then its
profit is zero. If it buys one unit, the lowest instantaneous profit it can make at any time
after making that investment is Ytπ1k, where k is the capacity at which its opponent
is unconstrained in the short run in response to an output of one: this corresponds
to the worst-case scenario where its opponent holds the capacity which leaves the firm
the lowest instantaneous profit and the firm does not acquire any further units even
if it is profitable for it to do so. The maximized expected discounted present value
from buying one capacity unit at some future time τ is, in that worst-case scenario,
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V (0, k, y) = supτ E
y
©R∞

τ
e−rtYtπ1kdt− e−rτI

ª
. Using the approach of Lemma 1 to

evaluate V leads to V (0, k, y) = supy0k

³
y
y0k

´β ¡
π1k
r−αy0k − I

¢
. The value of y0k that solves

the maximization is y∗0k =
I(r−α)
π1k

β
β−1 so that V (0, k, y) > 0. Thus the strategy of

never buying in the future is strictly dominated for the firm whose capacity is zero. In
consequence both firms will eventually hold strictly positive capacity.

Either A or B is necessary. Assume that neither A nor B holds, that is: let l and k be
the respective capacities; let l be such that the corresponding firm is capacity constrained
and let k be such that the firm that holds k units is not constrained if the other firm has a
capacity of l+1 or more units. If the first firm increases its capacity to l+1 = n its current
instantaneous profit increases to Ytπnk > Ytπlk and stays at that level forever since
the opponent, not being capacity constrained, has no alternative but to accommodate
by reducing output. The maximized gain in expected discounted present value from

bringing capacity to n at some future time τ is V (l, k, y) = supylk

³
y
ylk

´β ¡
πnk−πlk
r−α ylk − I

¢
.

This is positive, implying that a strategy of never investing in a situation where one firm
is constrained, while the other is unconstrained or would become unconstrained after a
unit investment by its opponent, is strictly dominated.

Condition A is sufficient. If neither capacity constraint is binding, no firm can
increase profit by further investing so that the game is necessarily over.

Proof of Proposition 2. #1 and #2. As shown in the main text, if a firm invests
the first time Yt reaches y from below while the other firm waits, its payoff is L (0, 0, y)
as given by (5) and the payoff of its opponent is F ∗(0, 0, y) given by (3) . If both firms

invest simultaneously at Yt = y, taking ys00 = y in Lemma 1, their payoff is, eS (0, 0, y) =
π11
r−αy − I. Let:32

sf1 (0, 0, y) = s−f1 (0, 0, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if y ∈ [0, yp00)
L(0,0,y)−F∗(0,0,y)
L(0,0,y)−S(0,0,y) , if y ∈ [y

p
00, y

∗
01)

1, if y ∈ [y∗01,∞)

.

sf1 (0, ν, y) = s−f1 (0, ν, y) =

⎧⎪⎨⎪⎩ 0, if y ∈ [0, y∗01), ν ≥ 1

1, if y ∈ [y∗01,∞), ν ≥ 1

sf1 (ν, ν
0, y) = s−f1 (ν, ν 0, y) = 0 ∀y; ν, ν 0 ≥ 1

32If the first investor can increase its rent by investing in a second unit, that is if ∆L (1, 0, y) =

π20−π10
r−α y − I −

³
y
y∗01

´β
π20−π10
r−α y is positive on some interval

£
y10, y10

¤
then the MPE strategy profile

must also specify sf1 (1, 0, y) =

½
1, y10 ≤ y < y10
0, otherwise

where y10 ≤ y10 < y∗01. It is tedious, but not

difficult, to also work out the corresponding value of yp00, which is lower since the rent of the first
investor would otherwise exceed that of its opponent. We leave it to interested readers to adapt the
foregoing proof to such cases where it might be profitable for the first investor to invest more than once
before its opponent does.
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where sf1 (i, j, y) is a probability distribution satisfying the detailed definition given in
Boyer et al. (2004, Appendix A). It can be interpreted as the intensity with which firm
f invests in one unit of capacity in state (i, j, y) , i.e. when it holds i capacity units,
its opponent holds j units, and Yt = y. We have shown already that, on [0, yp00), it is
a dominant strategy not to invest, and on (y∗01,∞), it is dominant for a firm with zero
capacity to invest if the other holds one unit. The above strategy combination implies
that an investment is sure to occur the instant Yt reaches y

∗
01 because then s

f
1 (0, 0, y) and

s−f1 (0, 0, y) start increasing, while no simultaneous investment can occur at yp00 because

sf1 (0, 0, y
p
00) and s−f1 (0, 0, yp00) are still zero. Once one firm has invested, the other one

abstains from investing
³
s−f1 (0, ν, y) = 0

´
until Yt reaches y

∗
01.

We now show that the above strategy profile is an MPE strategy profile in any
subgame starting at y ∈ [yp00, y∗01). For y ∈ [yp00, y∗01), if firm f deviates by choosing
s0 (0, 0, y) = 0, the other firm invests at y so that firm f ’s dominant strategy in the
continuation is to invest at y∗01 for a continuation payoff of F

∗ (0, 0, y). If it chooses to
deviate with intensity s0 (0, 0, y) = λ ∈ (0, 1], its continuation payoff is:

λ
h
1− s−f1 (0, 0, y)

i
L(0, 0, y) + (1− λ) s−f1 (0, 0, y)F ∗(0, 0, y) + λs−f1 (0, 0, y) eS (0, 0, y)

λ− λs−f1 (0, 0, y) + s−f1 (0, 0, y)
.

Substituting for s−f1 (0, 0, y), this is equal to F ∗ (0, 0, y). Thus, for any subgame starting
at y ∈ (yp00, y∗01), both firms are indifferent between all possible choices. At y = yp00 the
continuation payoff from the candidate MPE strategies is F ∗ (0, 0, yp00) = L (0, 0, yp00) as

for all possible alternatives. Last, the right partial derivative ∂+y s
f
1(0, 0, y

00) is strictly
positive as required by regularity condition (R2) in Boyer et al.. For the proof that there
is no other equilibrium outcome, we refer the reader to Fudenberg and Tirole (1985,
Appendix 1).

Proof of Proposition 3. For each y ∈ (0, y∗12], F ∗ (1, 1, y) , L (1, 1, y), and eS (1, 1, y) =
π22
r−αy− I are respectively the expected payoffs of becoming the first investor, the second
investor, and of investing immediately, simultaneously with the other firm. As in the
proof of Proposition 1, it can be shown that the strategy profile defined below is an
MPE strategy profile:

sf1 (1, 1, y) = s−f1 (1, 1, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, y ∈ [0, yp11)
L(1,1,y)−F∗(1,1,y)
L(1,1,y)−S(1,1,y) , y ∈ [y

p
11, y

∗
12)

1, y ∈ [y∗12,∞)

.

sf1 (1, 2, y) = s−f1 (1, 2, y) =

⎧⎪⎨⎪⎩ 0, y ∈ [0, y∗12)

1, y ∈ [y∗12,∞)

sf1 (2, 2, y) = s−f1 (2, 2, y) = 0 ∀y
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Proof of Proposition 4. #1 Let L (1, 1, y) ≤ S∗ (1, 1, y) ∀y ∈ (0, y∗12]. By the
definition of S∗ (1, 1, y) , one has L (1, 1, y) ≤ S∗ (1, 1, y) ∀y ∈ (0, ys∗11].We will show that
the following (tacit collusion) strategies, whose equilibrium payoff is S∗ (1, 1, y) for both
firms, yield a MPE :

sf1 (1, 1, y) = s−f1 (1, 1, y) =

⎧⎪⎨⎪⎩ 0, y ∈ [0, ys∗11)

1, y ∈ [ys∗11,∞)
,

sf1 (1, 2, y) = s−f1 (1, 2, y) =

⎧⎪⎨⎪⎩ 0, y ∈ [0, y∗12)

1, y ∈ [y∗12,∞)
.

For either firm, say f , a deviation from sf1 (1, 1, y) either results in an investment after y
s∗
11

is reached, or in an investment before ys∗11 is reached. In the former instance, since −f has
already invested when f invests, the payoff is F (1, 2, y) < F ∗ (1, 2, y) ≤ S∗ (1, 1, y) where
the last inequality follows from the fact that ys11 = y∗12 is admissible in the maximization
that defines S∗ (1, 1, y) . If the deviation results in an investment by f before ys∗11 is

reached, then −f applies s−f1 (1, 2, y). The payoff to f is L (1, 1, y) if the deviation
occurs before y∗12 is reached and S (1, 1, y) if it occurs at or after y∗12 (since in that case
−f invests immediately). Since S (1, 1, y) ≤ S∗ (1, 1, y), the above strategies yield a
MPE with joint investment at ys∗11.

Now we show necessity, i.e. that no equilibrium exists if L (1, 1, y) ≤ S∗ (1, 1, y) is
violated. First, consider joint investment at ys11 with payoff S̃ (1, 1, y) ≤ S∗ (1, 1, y).
Clearly the above strategy adjusted for joint investment at ys11 rather than ys∗11 yields a
MPE if L (1, 1, y) ≤ S̃ (1, 1, y) ∀y ∈ (0, ys11]; but L (1, 1, y) ≤ S̃ (1, 1, y) ∀y ∈ (0, ys11]
implies L (1, 1, y) ≤ S∗ (1, 1, y) ∀y ∈ (0, y∗12], a contradiction. Second consider any
situation with L (1, 1, y) > S∗ (1, 1, y) for some y ∈ (0, y∗12]; this implies L (1, 1, y) >
S̃ (1, 1, y) for any joint investment threshold other than ys∗11; then deviation at y is
preferable for any candidate joint investment threshold. This completes the proof of
existence.

With respect to the existence of a continuum of tacit collusion MPE s, suppose now
that S (1, 1, y) > L(2, 1, y) for each y < y∗12, and define ys to be smallest value of
ys11 ∈ [y∗12, ys∗11) such that:

π11
r − α

y +

µ
y

ys11

¶β½
π22 − π11
r − α

ys11 − I

¾
≥ L(2, 1, y)

for all y ∈ [0, y∗12]. Then, for any ys11 ∈ [ys, ys∗11], one can as above construct an MPE
such that firms invest jointly at τ s11 = inf{t ≥ 0 | Yt ≥ ys11}. By definition of ys∗11, the
expected payoff from jointly investing at τ s11 is an increasing function of the investment
trigger ys11 over the range [y

s, ys∗11]. It follows that these MPE s are Pareto ranked, and
that the Pareto optimal MPE corresponds to joint investment at τ s∗11 .
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#2. Rents are equal and exceed F (1, 2, y) by the definition of S. Since the firms
act simultaneously, joint profits equal 2S∗ (1, 1, y) under joint investment at τ s∗11 . Joint
investment is a contraint in the definition of S.

#3. As explained in the text, when π22 < π11, y
s∗
11 → ∞; thus firms never invest.

Otherwise the above strategy profile implies joint investment at ys∗11.

Proof of Proposition 5. We first prove #3. Assume that π22−π11 > 0. By Proposition
4.1, a tacit collusion equilibrium exists if and only ifE (y; I, β) is positive for all y < y∗12.
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Thus we study the sign of:

E (y; I, β) = −π21 − π11
r − α

y + I +K (β) yβ

for y ∈ [0, y∗12] where, after substitution of the expressions for y∗12 and ys∗11,

K (β) =

µ
β − 1
βI

¶β−1
Ã
β−1

µ
π22 − π11
(r − α)

¶β

+

µ
π12 − π22
r − α

¶β µ
π22 − π21
π22 − π12

¶!

The function E is strictly convex, strictly decreasing in a right neighborhood of zero,
and limy→∞E (y; I, β) = ∞. It follows that E attains its minimum at a unique point
yE > 0 that is characterized by the first-order condition:

βK(β)yβ−1E =
π21 − π11
r − α

. (A.2)

Substituting in the expression for E(yE), it follows that the minimized value of E is:

E∗(β) ≡ min
y≥0

E (y; I, β) = (1− β)K(β)yβE + I = I − β − 1
β

π21 − π11
r − α

yE.

(A.3)

Changes in σ affect the function E only through β; β is a function that is strictly
decreasing in σ and α (increasing in r) and that goes to 1 as σ → ∞ and as α ↑ r (as
r ↓ α), with σ ≥ 0 and r > α. By the envelope theorem, E∗0(β) < 0. It follows that
if β < β

0
and E∗(β0) = 0, then E∗(β) > 0, so that E (y; I, β) > 0 ∀y. Consequently

Λ (β0) ⊂ Λ (β) . This proves #3.

We now establish conditions under which Λ (β) is non empty and prove its inde-
pendence on I. Using (A.2) and (A.3) , the condition for E∗ (β) ≥ 0 can be written

33For y∗12 < y ≤ ys11 ≤ ys∗11, S
∗ (1, 1, y) is higher than the continuation of L (1, 1, y) .
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as

π21 − π11
π22 − π11

≤
"
1 + (β − 1) π22 − π11

π21 − π11

π21 − π22
π22 − π12

µ
π22 − π12
π22 − π11

¶β
# 1
β−1

This is independent of I. Now we take β = 2 because this allows to define the admissible
set of πij sufficiently explicitely to prove that the set is not empty. The condition
E∗ (2) ≥ 0 can be written, after some manipulations, as:

Q (x) = −x2 + bx+ c ≥ 0 . (A.4)

where b = π22 − π11, c = (π21 − π22) (π22 − π12), and x = π21 − π11. This quadratic
expression is subject to features implied by the output competition model, first, under
Assumption 1 on demand; and second, under Assumption 3 for the equal capacity Case
2 under scrutiny. These features are: π21 > π22 > π11 > π12 > 0 and π21−π11 > π22−π12
where the last inequality means that the rise in profit from increasing capacity from 1
to 2 units is higher when the opponent holds 1 unit than when it holds 2 units. Taking
π21 − π22 = 1 as normalization, the conditions of the Cournot model are equivalent to:

x > 1 ; x > c ; c > b ; b > 0. (A.5)

For values of x, b, and c satisfying conditions (A.5), Q (x) ≥ 0 if and only x is smaller
than or equal to the positive root of Q (x) , which is equal to 1

2

¡
b+
√
b2 + 4c

¢
. This is

possible if and only if the positive root is greater than both c and 1, or:

b ≥ max {1− c, c− 1}

Existence of the tacit collusion MPE when β = 2 is therefore ensured when, in addition
to the regular features arising from the Cournot model and under the normalization
π21 − π22 = 1,

π22 − π11 ≥ max {1− (π22 − π12) , (π22 − π12)− 1}

For example, if π21 = 1; π22 =
5
6
; π12 =

3
6
; π11 =

3.5
6
, then π21 − π22 =

1
6
; normalizing

requires multiplying all those values by 6; then π22 − π11 =
9
6
> π22 − π12 − 1 = 1.

Proof of Lemma 2. The values of the bigger firm and the smaller firm when their
opponent invests immediately are respectively F ∗ (2, 1, y) and F ∗ (1, 2, y) . For the bigger
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firm,

F ∗ (2, 1, y) = max

(
S∗ (2, 2, y) ,

π22
r − α

y +

µ
y

yp22

¶β µ
L (2, 2, yp22)−

π22
r − α

yp22

¶)

where S∗ (2, 2, y) and L (2, 2, y) correspond to
the tacit collusion and the preemption equilibria analyzed in Section 3.2 (for k0 = 2),
respectively given by (11) taken at the joint-profit maximizing trigger (12), and by (10).
Thus, in case of tacit collusion, it is assumed that the firms reach the highest payoff
equilibrium; the proof can be adapted for any other tacit-collusion equilibrium. If a
tacit-collusion equilibrium does not exist at node (2, 2) , the maximum is trivially taken
to be given by the second term.

The smaller firm remains capacity constrained until it holds three units; if it allows
the bigger firm to invest first, the latter will then have to accomodate whenever the
smaller firm introduces a new unit. Consequently, the smaller firm’s dominant policy in
that case is to acquire two units successively at its stand-alone trigger values:

F ∗ (1, 2, y) = sup
y13, y23

"
π13
r − α

y +

µ
y

y13

¶β µ
π23 − π13
r − α

y13 − I

¶
+

µ
y

y23

¶β µ
π33 − π23
r − α

y23 − I

¶#
.

Let y∗13 =
1

π23−π13 (r − α) I β
β−1 , and y∗23 =

1
π33−π23 (r − α) I β

β−1 be the corresponding
investment triggers.

Given the dominant policy of the smaller firm when the bigger firm invests first, the
value of the latter, if it purchases its third unit at Yt = y when the small firm holds one
unit, is:

L (2, 1, y) =
π31
r − α

y − I +

µ
y

y∗13

¶β
π32 − π31
r − α

y∗13 +

µ
y

y∗23

¶β
π33 − π32
r − α

y∗23

If the smaller firm invests first, at Yt = y,

L (1, 2, y) = max

(
S∗ (2, 2, y) ,

π22
r − α

y +

µ
y

yp22

¶β

L (2, 2, yp22)

)
− I.

For y ≤ y∗13, let G (2, 1, y) ≡ L (2, 1, y) − F ∗ (2, 1, y) denote the gain for the bigger
firm from investing at the current value y of Yt, as opposed to allowing its opponent to
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take the lead:

G (2, 1, y) =
π31
r − α

y − I +

µ
y

y∗13

¶β µ
π32 − π31
r − α

y∗13

¶
+

µ
y

y∗23

¶β
π33 − π32
r − α

y∗23

−max
(
S∗ (2, 2, y) ,

π22
r − α

y +

µ
y

yp22

¶β µ
L (2, 2, yp22)−

π22
r − α

yp22

¶)
(A.6)

Considering (11), (12) , and (10) , G (2, 1, y) is concave whatever the maximum in the
last term and it is increasing in a right-neighbourhood of zero; also, G (2, 1, 0) = −I.
Consequently, if G (2, 1, 0) reaches a strictly positive value for some y < y∗13, then there
exists at least one value of y in the interval [0, y∗13] such that G (2, 1, y) = 0. We define
yp12 as the smallest root.

Proof of Proposition 6. The case 0 < xc − k0 ≤ 1 (k0 = 1) is discussed in the main
text; we focus on 1 < xc − k0 ≤ 2 (k0 = 1) in this proof.
Strategies and outcomes. By Assumption 4, if the bigger firm invests at y ≤ y∗13, the sole
possible continuation is one where the smaller firm invests at y∗13 and then again at y

∗
23.

The dominant strategy for the smaller firm is then:

s1 (1, 3, y) =

⎧⎪⎨⎪⎩ 0, if y ∈ [0, y∗13)

1, if y ∈ [y∗13,∞)
; s1 (2, 3, y) =

⎧⎪⎨⎪⎩ 0, if y ∈ [0, y∗23)

1, if y ∈ [y∗23,∞)
.

Alternatively, if the smaller firm invests at some y ≤ y∗13, the outcome is equal capacity,
which is the situation analyzed in Section 3.2. Propositions 3 and 4 give the alterna-
tive equilibria for the continuation. The preemption MPE always exist; tacit-collusion
MPEs exist if and only if L (2, 2, y) ≤ S∗ (2, 2, y) ∀y ∈ (0, y∗23]. If there is more than one
continuation MPE, we assume that the equilibrium ensuring the highest continuation
payoff is selected.

Payoffs. The gain for the bigger firm to invest immediately, if the alternative is the
smaller firm taking the lead, is G (2, 1, y) (see above). As far as the smaller firm is
concerned, two alternatives may arise. Trivially, if investing when its opponent holds
one unit is a dominated strategy for the bigger firm (G (2, 1, y) ≤ 0 ∀y ≤ y∗13), then
Result #1 holds, with the smaller firm investing at its stand-alone date, i.e. when y
reaches y∗12 for the first time. Alternatively, if G (2, 1, y) > 0 for some values of y ≤ y∗13
and if the strategy of the bigger firm is to take the lead if the smaller firm does not
do so first, then the gain for the smaller firm to invest immediately is G (1, 2, y) ≡
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L (1, 2, y)− F ∗ (1, 2, y) , y ≤ y∗13:

G (1, 2, y) = −I +max
(
S∗ (2, 2, y) ,

π22
r − α

y +

µ
y

yp22

¶β µ
L (2, 2, yp22)−

π22
r − α

yp22

¶)

− sup
y13, y23

"
π13
r − α

y +

µ
y

y13

¶β µ
π23 − π13
r − α

y13 − I

¶
+

µ
y

y23

¶β µ
π33 − π23
r − α

y23 − I

¶#
(A.7)

Gain from investing immediately rather than waiting. Result #1 has just been es-
tablished when the gain G (2, 1, y) for the bigger firm to invest immediately is non
positive ∀y ≤ y∗13. We now assume G (2, 1, y) > 0 for some y ≤ y∗13 and compare it, as
given by (A.6) , with G (1, 2, y), the gain for the smaller firm to invest immediately, as
given by (A.7). Thus, for y ≤ y∗13,

G (1, 2, y)−G (2, 1, y) = −I +max
(
S∗ (2, 2, y) ,

π22
r − α

y +

µ
y

yp22

¶β µ
L (2, 2, yp22)−

π22
r − α

yp22

¶)

− π13
r − α

y −
µ

y

y∗13

¶β µ
π23 − π13
r − α

y∗13 − I

¶
−
µ

y

y∗23

¶β µ
π33 − π23
r − α

y∗23 − I

¶
− π31
r − α

y + I −
µ

y

y∗13

¶β µ
π32 − π31
r − α

y∗13

¶
−
µ

y

y∗23

¶β
π33 − π32
r − α

y∗23

+max

(
S∗ (2, 2, y) ,

π22
r − α

y +

µ
y

yp22

¶β µ
L (2, 2, yp22)−

π22
r − α

yp22

¶)

Simplifying and using the fact that S∗ ≥ L,

G (1, 2, y)−G (2, 1, y) ≥ −π13 + π31
r − α

y −
µ

y

y∗13

¶β µ
π23 − π13 + π32 − π31

r − α
y∗13 − I

¶
−
µ

y

y∗23

¶β µ
2π33 − π23 − π32

r − α
y∗23 − I

¶
+2

Ã
π22
r − α

y +

µ
y

yp22

¶β µ
L (2, 2, yp22)−

π22
r − α

yp22

¶!

By definition of the preemption equilibrium at capacities (2, 2) the rents of both firms
are equalized if one of the firms invests at Yt = yp22. That is: L (2, 2, y

p
22) − π22

r−αy
p
22 =

F ∗ (2, 3, yp22)− π22
r−αy

p
22 =

π23−π22
r−α yp22+

³
yp22
y∗23

´β ¡
π33−π23
r−α y∗23 − I

¢
; substituting into the above
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inequality and rearranging,

G (1, 2, y)−G (2, 1, y) ≥ 2π22 − π13 − π31
r − α

y +

µ
y

y∗13

¶β

y∗13
π13 − π23 + π31 − π32

r − α

+ 2

µ
y

yp22

¶β
π23 − π22
r − α

yp22 +

µ
y

y∗23

¶β

y∗23

µ
π32 − π23
r − α

¶
+

Ãµ
y

y∗13

¶β

−
µ

y

y∗23

¶β
!
I

Evaluating the πij as price times quantity, and defining pl as the industry price when
there are l = i + j capacity unit in the industry (without any ambiguity as long as
i, j ≤ 3 so that firms operate at full capacity), this can be written as:

G (1, 2, y)−G (2, 1, y) ≥
µ

y

y∗13

¶β

y∗13
4p4 − 5p5
r − α

+

µ
y

yp22

¶β
4 (p5 − p4)

r − α
yp22

+

µ
y

y∗23

¶β

y∗23
p5

r − α
+

Ãµ
y

y∗13

¶β

−
µ

y

y∗23

¶β
!
I

We know that y∗23 > y∗13 and y∗23 > yp22 and we note that the right-hand-side in
the above expression would be zero if it was true that yp22 = y∗13 = y∗23. In order to
show that G (1, 2, y) − G (2, 1, y) > 0 ∀y ≤ y∗13, we first show that the result holds if
y∗13 = yp22 < y∗23. Then we note that G (1, 2, y) − G (2, 1, y) is increasing in yp22 and we

show that yp22 ≥ y∗13. Thus let eG (ε) = G (1, 2, y)−G (2, 1, y) for y∗13 = yp22 = εy∗23. TheneG (1) = 0 and setting 0 < ε < 1 amounts to setting y∗13 = yp22 < y∗23. Since
dG(ε)
dε

<
0 ∀ε, 0 < ε ≤ 1, it follows that G (1, 2, y) − G (2, 1, y) > 0 for y∗13 = yp22 < y∗23. Since
p5− p4 < 0, G (1, 2, y)−G (2, 1, y) is increasing in yp22 and thus remains strictly positive
for y∗13 < yp22 < y∗23. In order to show that y

∗
13 < yp22, we assume to the contrary that

yp22 = y∗13 =
r−α

π23−π13 I
β

β−1 . Evaluating L (2, 2, y) and F
∗ (2, 3, y) at that value of y, it can be

shown that L (2, 2, y∗13) < F ∗ (2, 3, y∗13) while, by definition, L (2, 2, y
p
22) = F ∗ (2, 3, yp22) .

Since L − F ∗ is increasing in y over the relevant range (see Figure 2), it follows that
y∗13 < yp22, which concludes the proof that G (1, 2, y)−G (2, 1, y) > 0 ∀y < y∗13.

Thus the gain from investing immediately while its opponent waits is higher for the small
firm than it is for the bigger firm at any y < y∗13. For any y such that G (2, 1, y) ≥ 0,
G (1, 2, y) > 0 so the best response for the small firm to a strategy by the bigger firm
of investing at such level of Yt is to preempt at y − ε. Consequently a preemption
equilibrium with the bigger firm as first investor does not exist.

Consider preemption by the smaller firm. If G (2, 1, y) > 0 for some y < y∗13 so that
the bigger firm may invest first if the smaller one does not preempt, then, by Lemma 2,
G (2, 1, yp12) = 0. Since G (1, 2, y)−G (2, 1, y) > 0, it follows that G (1, 2, yp12) > 0. Then
the smaller firm should invest at yp12 which is achieved in equilibrium for the following
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strategies (note that the smaller firm invests first with probability one):

s1 (1, 2, y) =

⎧⎪⎨⎪⎩ 0, if y ∈ [0, yp12)

1, if y ∈ [yp12,∞)
; s1 (2, 1, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if y ∈ [0, yp12)
L(2,1,y)−F∗(2,1,y)
L(2,1,y)−S(2,1,y) , if y ∈ [y

p
12, y

∗
12)

1, if y ∈ [y∗12,∞)

.

The rest of the proof of #1 and #2 is a mere adaptation of the proof of Proposition
2. For the proof of uniqueness, we refer the reader to Fudenberg and Tirole (1985,
Appendix 1).

#3 can be readily verified.

Proof of Proposition 7. Under Assumption 4 with k0 = 1:
#1. If π32 − π22 = 0, there exists no value of Yt at which it is profitable for the bigger
firm to invest if the smaller does so; thus there exists no tacit-collusion MPE with
simultaneous investment. Since π22 > π12, abstaining from investing is a dominated
strategy for the smaller firm; thus there exists no tacit-collusion MPE by inaction.

#2. π32 − π22 > 0. The sole alternative to the tacit-collusion MPE, if it exists, is the
preemption MPE. The proof is similar to that of Proposition 4 so we only introduce
the main elements. By Proposition 6, for the bigger firm, the alternative to tacit col-
lusion is to be passive in the preemption MPE; for the smaller firm, the alternative
to tacit collusion is to be first investor in the preemption MPE. Consequently, adapt-
ing Proposition 4, collusion is an MPE if and only if S (2, 1, y) − F ∗ (2, 1, y) ≥ 0 and
S (1, 2, y)− L (1, 2, y) ≥ 0 for all y ≤ ys21 where y

s
21 is the threshold at which both firms

invest simultaneously. We compute these gains from tacit collusion.
First we evaluate S (2, 1, y) and S (1, 2, y). Since π32 − π22 > 0, 2 < xc ≤ 3, so that a
capacity of three units is necessary to produce the unconstrained Cournot output. In
case of simultaneous investment both firms acquire one unit at some common trigger
ys21 to be defined. Then the bigger firm holds three units and must accomodate any
increase in production up to xc by the smaller firm. Thus it is a dominant strategy
for the latter to acquire a third unit at its stand-alone threshold y∗23, if y

s
21 ≤ y∗23, or

at y23 = ys21 if y
s
21 > y∗23. Once both firms hold three units each, the game is over by

Proposition 1(A). Thus the tacit-collusion equilibrium, if it exists, involves simultaneous
investment at ys21, followed, possibly immediately, by an investment by the smaller firm.
The corresponding values for the bigger and the smaller firms are respectively:

S (2, 1, y) =
π21
r − α

y +

µ
y

ys21

¶β µ
π32 − π21
r − α

ys21 − I

¶
+

µ
y

y23

¶β
π33 − π32
r − α

y23

S (1, 2, y) =
π12
r − α

y +

µ
y

ys21

¶β µ
π23 − π12
r − α

ys21 − I

¶
+

µ
y

y23

¶β µ
π33 − π23
r − α

y23 − I

¶
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where either y23 = y∗23 > ys21 or y
s
21 = y23 ≥ y∗23.

34 Now we evaluate the gain from
colluding for the bigger firm, over its alternative of letting the smaller firm invest first,
using the expression established in the proof of Lemma 2 for F ∗ (2, 1, y) :

GS (2, 1, y) = S (2, 1, y)− F ∗ (2, 1, y)

=
π21
r − α

y +

µ
y

ys21

¶β µ
π32 − π21
r − α

ys21 − I

¶
+

µ
y

y23

¶β
π33 − π32
r − α

y23

−max
(
S∗ (2, 2, y) ,

π22
r − α

y +

µ
y

yp22

¶β µ
L (2, 2, yp22)−

π22
r − α

yp22

¶)
.(A.8)

Similarly, for the smaller firm, the gain from colluding over the alternative of investing
first is, using the expression in the proof of Lemma 2 for L (1, 2, y):

GS (1, 2, y) = S (1, 2, y)− L (1, 2, y)

=
π12
r − α

y +

µ
y

ys21

¶β µ
π23 − π12
r − α

ys21 − I

¶
+

µ
y

y23

¶β µ
π33 − π23
r − α

y23 − I

¶
+I −max

(
S∗ (2, 2, y) ,

π22
r − α

y +

µ
y

yp22

¶β µ
L (2, 2, yp22)−

π22
r − α

yp22

¶)
.(A.9)

Let ys∗12 and y
s∗
21 be the values of y that maximize S (1, 2, y) and S (2, 1, y) respectively with

respect to ys21. That is, y
s∗
12 =

1
π23−π12 (r − α) I β

β−1 ; y
s∗
21 =

1
π32−π21 (r − α) I β

β−1 . Note that
ys∗12 < ys∗21. Consider y

s∗
12 and y

s∗
21 as possible triggers in a tacit-collusion equilibrium; since

S (1, 2, y) is decreasing in y beyond its maximum, it is a dominant strategy for the smaller
firm to invest when y ≥ ys∗12. Thus in MPE, y

s
12 ≤ ys∗12 and simultaneous investment at

ys∗12 yields a higher payoff to both firms than at y
s
12 < ys∗12. This equilibrium exists if and

only if both S (1, 2, y)− L (1, 2, y) and S (2, 1, y)− F ∗ (2, 1, y) are non negative for any
y ≤ ys∗12 = y23. The rest of the proof of #2, about parameter conditions, is otherwise
similar to that of Proposition 5.

#3. It can be verified that the value that maximizes S (1, 2, y) + S (2, 1, y) is higher
than min (ys∗12, y

s∗
21).

34We take the case y23 = ys21 corresponding to situations where y
∗
23 < ys21: the second investment of

the smaller firm occurs later under tacit-collusion than the stand-alone trigger y∗23 would imply because
the smaller firm delays its first investment beyond y∗23 in order to collude. The approach is identical for
the alternative case and leads to the same implications.
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