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Résumé/abstract

Usual inference methods for stable distributions are typically based on limit distributions. But
asymptotic approximations can easily be unreliable in such cases, for standard regularity conditions
may not apply or may hold only weakly. This paper proposes finite-sample tests and confidence sets
for tail thickness and asymmetry parameters (a and b ) of stable distributions. The confidence sets are
built by inverting exact goodness-of-fit tests for hypotheses which assign specific values to these
parameters. We propose extensions of the Kolmogorov-Smirnov, Shapiro-Wilk and Filliben criteria, as
well as the quantile-based statistics proposed by McCulloch (1986) in order to better capture tail
behavior. The suggested criteria compare empirical goodness-of-fit or quantile-based measures with
their hypothesized values. Since the distributions involved are quite complex and non-standard, the
relevant hypothetical measures are approximated by simulation, and p-values are obtained using
Monte Carlo (MC) test techniques. The properties of the proposed procedures are investigated by
simulation. In contrast with conventional wisdom, we find reliable results with sample sizes as small
as 25. The proposed methodology is applied to daily electricity price data in the U.S. over the period
2001-2006. The results show clearly that heavy kurtosis and asymmetry are prevalent in these series.

Mots clés/keywords : stable distribution; skewness; asymmetry; exact test; Monte
Carlo test; specification test; goodness-of-fit; tail parameter; electricity price.
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1. Introduction

Vector autoregressive (VAR) modeling has received considerablgiaticespecially in time series
econometrics; seelltkepohl (2001, 2005), Hamilton (1994) and Dhrymes (1998). Thisijawity

is due to the fact that such models are easy to estimate and can accowritfively complex
dynamic phenomena. However, besides it often requires a very largbanwf parameters to
produce a good fit, the VAR specification is not invariant to many basic limeasformations. For
instance, VAR subvectors follow VARMA models. Temporal and contempewas aggregations
lead to mixed VARMA processes {ltkepohl (1987)]. Also, trend and seasonal adjustments lead to
models outside the VAR class [Maravall (1993)]. The VARMA structurdudes VAR models as a
special case and can reproduce in a more parsimonious way a brésseofcautocovariances and
data generating processes, which can improve estimation and forecasgrigtkepohl (2006) and
Athanasopoulos and Vahid (2008).

VARMA modeling has been proposed long ago [see Hillmer and Tiao (1978, and Box
(1981), Reinsel (1997) anditkepohl (2005)] but has been of little use in practice. Indeed, besides
fulfilling potentially complex restrictions to achieve identifiability, the task is compleanby the
multivariate nature of the data. Once an identifiable specification has beanl&bed, different
estimation methods are considered. But the most studied is ML with strong i@agssors; see
Hannan (1968), Hannan, Kavalieris and Mackisack (1986), Mauricio (2002, 20a6) Gallego
(2009), among others. However, maximizing the exact likelihood in statidnaeeytible VARMA
models is computationally burdensome. Tiao and Box (1981) stressed thanitcls easier to
maximize a conditional likelihood, though numerical problems still occur with kiiglensional
systems in lack of suitable initial values. Recently, Metaxoglou and Smith (200d)ed the iden-
tification and ML estimation of VARMA models using EM algorithm-based state-espagthods.
Although this can yield improvements over earlier ML approaches, we notegbavering the
echelon VARMA coefficient estimates from the state-space formulation magetessarily lead
to stationary and invertible models. Further, the Gaussian ML estimation of \VARMdels still
requires potentially lengthy iterative optimization over a high-dimensionahpetexr space. Thus,
in high-dimensional systems, nonlinear estimation procedures cannot owifielinear methods
from the computational cost viewpoint, especially when simulation-basectide is required.

Recursive linear regression methods, initially proposed by Hannan esarien (1982) for
ARMA models, have been extended to the VARMA case; see Hannan aradiétas (1984), Rein-
sel, Basu and Yap (1992) and Poskitt and Salau (1995). It consisssinaging, by least squares
(LS), the innovations of the VARMA process from a long autoregresgiaen be used as re-
gressors to estimate the VARMA parameters. Finally, a linear regressioarmidrmed regressors
involving newly filtered residuals is performed to achieve efficiency. Natettiis multistep linear
estimation was initially introduced for model selection and for obtaining consisttimates which
can be used to initialize nonlinear methods, such as ML. The seminal paptarman and Kava-
lieris (1984) proposed a four-step linear procedure for specifymgigeatimating stationary ARMAX
systems. The first three steps focus on model specification and onipgindial estimates, using
Toeplitz regressions based on the Levinson-Whittle algorithm. Howevese dstimates are sub-
stantially biased especially when the ratio of the autoregression-ordergartiy@e size is too large



[Hannan and Deistler (1988)]. Finally, using a GLS regression, theHf@tage yields asymptoti-
cally efficient estimates. Reinsel et al. (1992) analyzed the ML estimatioARMA models from
a GLS viewpoint. Modulo some approximations allowing for the asymptotic elguiga between
GLS and ML, they derived a linear regression with error terms following aingoaverage (MA)
process. However, their analysis underscores the heavy computdtimdan of the method since
it systematically requires the inversion of a high-dimensional weighting matnispied by Kor-
eisha and Pukkila (1990), Poskitt and Salau (1995) investigated the nskaificbetween the GLS
and Gaussian estimation of echelon form VARMA models. Although asymptotiegilivalent to
ML, their estimates are substantially biased in finite samples. With a simulation stothacog
selected linear methods on the quality of the estimates and the accuracy of inopéedsts and
impulse responses, Kascha (2007) highlighted the overall superiotite dburth-stage linear esti-
mation procedure of Hannan and Kavalieris (1984), while noting situatitresermhe investigated
methods do not perform very well.

For making VARMA modeling practical, one needs estimation methods that are suup&,
and easy to implement with standard software. More especially as largéesapgpoximation-
based inference in high-dimensional dynamic models is unreliable, andrithdason-based pro-
cedures, such as bootstrap techniques, are rather recommendedvefauch methods are im-
practical if computing the estimator is difficult or time consuming. In this paperstwdy two
linear estimators for stationary invertible echelon form VARMA models with kmdonecker
indices. We focus on the echelon form since it often tends to delivervelagparsimonious pa-
rameterization (involving fewer free parameters) than equivalent idexttditschemes, such as the
final equations form; seeiltkepohl (2005). Our setup easily adapts to cointegrated VARMA and
VARMAX framework and alternative identifying schemes. The first estimastar GLS version of
the two-step LS estimator studied in Dufour and Jouini (2005), using a nesreral setup. The
second is a new relatively simple three-step linear estimator which is asymptoéqgailalent to
ML. Unlike predecessors, it relies on the novelty that consists on usingng the regressors, fil-
tered residuals which take into account the truncation error of the fige-$d@g autoregression,
based on a newly proposed recursive scheme using consistent initiasvdt can also be inter-
preted as a one-step estimator by the scoring method, starting ffdma@onsistent two-step linear
estimator. The proposed estimator is computationally much simpler and more priwitdhe
ML estimator and earlier asymptotically efficient “linear” estimators, namely tisoggested by
Hannan and Kavalieris (1984), Reinsel et al. (1992), and PoskitGatali (1995). As such, both
of the estimators studied provide a handy basis for applying resamplingicimethodse(g,
bootstrapping).

We show that both estimators are consistent and asymptotically normal witg stravations.
Besides being computationally simpler, our efficient estimator shows distrillitiogory with ex-
plicit formulae of its asymptotic covariance matrix which is relatively simple angt easstimate
for inference purpose. Also, exploiting the complex dynamic structureeathiind-stage regression
residuals, we derive an efficient covariance estimator of the VARMAwuations, which is of order
T—! more accurate than the one by the fourth-stage of Hannan and Kaval@s®)( Finally, finite-
sample simulation evidence shows that two versions of our fully efficient estimnatperform the
multistep linear estimators studied.



The paper proceeds as follows. Sectbpresents the echelon form VARMA setup. Section
3 derives the two-step GLS estimator and gives its properties such aggenge and asymptotic
normality. Sectior} provides a heuristic derivation of the three-step GLS estimator then states its
convergence and asymptotic efficiency. Secttoshows a comparative simulation study on the
finite-sample performance of competing procedures. Finally, Seétmmcludes. Proofs are given
in AppendixA.

2. Framework
Let{y: :t € Z} be ak-dimensional random process with the echelon-form VARMA repreienta
P =Ho+O (L), (2.1)

where® (L) = @ — 3, ®L', O (L) = Go+3}_, OjL), p=max(py,..., Pk) given a vector of Kro-
necker indice$py, ..., pk)’, L denotes the lag operat@ = @, with @ a lower-triangular matrix
whose all diagonal elements are equal to gng= @ (1) py, with g1, = E(y), and{u; : t € Z} is

a sequence of multivariate innovations. The echelon VARMA operakdts) = [@y, (L)]| m1._«
andO (L) =[0im(L)]; 1« are left coprime and satisfy a set of restrictions such that, on any given
row| of @ (L) and® (L), ’(p{m (L) andBim (L) have the same degrgewith

P . .
Om(L) = 1—_2190”.]'—' if I =m,
I_p| . (2-2)
== Y @ulL ifl#m
i=p—Pm+1
Bim(L) =3 o6m;jL! with @ = @y, (2.3)

Pm =min(p +1,pm) forl>m,

=min(p;, Pm) forl <m, (2.4)

forI,m=1,..., k. Note thatp, = py is the number of free varying coefficients on théh diagonal
element of® (L) as well the order of the polynomials on the corresponding ro@ (f), while pim
specifies the number of free coefficients in the opergtgr(L) for | # m. SK, p is the McMil-
Z|k:1 zt‘n:l pim autoregressive (AR) aridz}‘zl pi MA free coefficients, respectively. For proofs on
the unigueness of the echelon form and other identification conditionshangd consult Hannan
(1969, 1970, 1976, 1979), Deistler and Hannan (1981), Hannan and D€i€Qk8), and litkepohl
(2005, Chapter 12).

The process (2.1) is said to be stationary and invertible with respectieemiinite-order AR
and MA representations:

nby=up+w and  yr=p,+¥(L)u, (2.5)



where M1 (L) = O (L) @ (L) = Iy — 52, LT, ¥(L) = @ (L) 'O (L) = lk+ Y2, HLY, and
U = (1) p, if respectively def®(z)} # 0 and def@ (2)} # 0 for all [7 < 1 (z€ C), with
det{l7(z)} # 0 and def¥ (z)} # 0 for all |z| < 1, Further, real constan®> 0 andp € (0, 1) exist
such that

I <Cp”  and  [%]|<Cp" (2.6)

where||.| is Schur's normi.e. ||Al|> = tr [A'A] for any matrixA. Also, letS®_oA; (n)Z =0 (2) .
Then by invertibility || A (n)|| < CpT, wheren is the vector of all free varying parameters implied
by the echelon form, as shall be specified below.

Now, setv = y; — U;. Then the latter is uncorrelated with the error tagnsince

Vi = ¢51[u¢+ii¢%yu+é@juu] (2.7)

Also, let X = [LVe,Y 1, Yo Y15+ -+ u{_,ﬂ’ and B = vec[lig, Po, ®1,..., D5, 04,..., O],
where®y = I, — @, be two vectors of respective sizils+ 1 andk?h+k, with h = 2p+ 1. Then
the echelon restrictions (2.1) - (2.4) imply a uniddt -+ k by r full-rank columns matri>R formed
by r selected distinct vectors from the identity mathjx,, , such thaRR= I, andf3 = Rn, where
n is anr-sized vector of free varying parameters witk k’h+k, so that (2.1) takes the form:

Yo = [X @ I RN + w, (2.8)

where [X{ ® Ik] Ris ak x r matrix. Further, under the assumption that the process is regular [by
means, with nonsingular covariance matrix of the innovations in the Wold dexsitigm, so that

the process is not linearly predictable and has a nonsingular instantase@ugnce matrix] with
continuous distribution, the echelon form ensures ﬂ%i@(t ® Ik] has a nonsingular covariance
matrix, so that rankR [x ® IR} =r, wherelx = E[XX/].

3. Generalized two-step linear estimation

Let {y_n;+1,..., yr } be a random sample of size + T whereny is a sequence, function df,
such thant — o asT — oo, Further, consider the infinite-order autoregression (arbpntated at
the lag-ordenr, precisely:

nr

Vo= Hpam T z Meyt—r + U (nr), (3.1)
=1

whereu,-,(nT) anduy (nt) stand respectively for a constant term and a compound innovation, such
that U ny) = (k=374 M) pyandu (N7) = 371 Me (Y1 — uy) +u. The following assump-
tions on the VARMA innovationsay and the truncation orda¥r of the long autoregression are
needed to establish the consistency and asymptotic distribution of the lineartestistadied be-

low.



Assumption 3.1 The vectorsut € Z, are independent and identically distributéd.d.) with mean
zero, positive definite (p.d.) covariance matkix= E (wUu/) and continuous distribution.

Assumption 3.2 There is a finite constantsisuch thatE | U ;uj tUrtUst | < my < oo, for all t and all
1<i, j, r,s<k.

Assumption 3.3 ny is a function of T such thatm— o and r# /T — 0as T— o, and, for some
c>0,0<9d1<1/2and T sufficiently large,n> cTo1,

Assumption 3.4 nr is a function of T such thatin— c and r#/T — 0as T — o, and, for some
c>0,0< < 1/4and T sufficiently large,n> cTO.

Assumptior3.1entails a strong VARMA process, while Assumpti®2 ensures that the empir-
ical autocovariances of the process have finite variances. AssumBt®aisd3.4 show alternative
conditions on the truncation lag of the first-stage long autoregression, which are required to en-
sure convergence and asymptotic normality of the estimators suggestesk agswimptions state
thatnt should grow towards infinity neither too fast nor too slowly. Further, byrititviity, ||I1;||
decays at an exponential rate [see (2.6)]. Hence, for sbm6, whenevent = cT? for somec > 0
andd > 0,

00

TS |IM]| -0 asT — . (3.2)
T=n7+1
Let T (nt) = [Bpa), [T (07),- s Pl (07)] = Weor) Fy ) D the LS estimator of the co-

efficient matrix/7 (nr) = [Up ), M-, Mo |, whereWy ) = T-iyLiwY(nr) and ) =
Tyl Y (o) Ye(nr), with Y (nr) = [L,¥i_1,--, Yi_n,] - Further, let

nr

GT(nT):yt_I:l['l(nT)_ ZnT(nT)yt*Ta t:]-a"'aTa (33)
=1

be the LS residuals of the long autoregression (3.1), anﬂJg,g; =71 Zthlﬁt (nr) Gt (nT)’. Then,
under Assumption3.1t0 3.3, and (3.2), Dufour and Jouini (2010) showed t(it/?/nr) ||G; (nr) —
W || is stochastically bounded, uniformlyin=1,..., T, that is

|G (nr) — u|| = Op(nr/TY2), uniformlyint=1,...,T. (3.4)

Then y
HZU(nT) —2u

Sy — 2= Op(nr/TY?). (3.5)
The asymptotic equivalence stated above suggests that we may be able tteestimséstently
the VARMA parameters in (2.8) by replacing the unobserved innovatioKswith their respective

first-stage estimates. Thus, modulo some manipulations, (2.8) can equivakentyritten as

)

i = [X (nr) @ kR +e (nr), (3.6)



whereX (n7) = [L% (1) .Y _1,--, Vi G- (7)., G- p(nr)' ] % (nr) = vt — G (n7) and
& () = G (r) + iej Uy ()], @3.7)
=

Noting that||e (nt) — G (nr) || = Op(nr/TY2), in view of (3.7) and (3.4), an explicit two-step
(feasible) GLS estimator af is simply

.
= argnminzla (nT)/ZU_(ﬁT)et (nT) = Qx(nr) W (nr) » (3.8)
t=

. . . -1 . . . _
where Qy(n) = {R[I‘X(nT) ® Zu*(ﬁﬂ]R} and Wy = T13 L R [X () ® Zu*(rlm}yt, with

. . ~ -1
Mxne) = T3 % (nr) % (nr)". In addition, letQx = {R’[I’x ® ;1 R} . Then under suit-
able conditions, Assumptiorgs1to 3.4, and (3.2), Dufour and Jouini (2010) have shown that

1 —nll = 0p(T 2 (3.9)
and 5
TY2(f —n) = N[0, Qx]. (3.10)

Further, they suggested ;) as a consistent estimator Qk.
Now, letZeny) = (T—P) 'S 518& (n7)& (1), where

&(nr)=v—[% () ®WRG, t=p+1,....T. (3.11)
Then, using (2.8), (3.4), (3.9) and (3.11), Dufour and Jouini (28h0wed that
|& (n7) —w|| = Op(ny/TY?), uniformly int = p+1,...,T. (3.12)

Hence N N
[ Zenr) = Zulls 125y — 20| = Op (e /TH2). (3.13)

4. Asymptotic efficiency

The two-step linear estimator described above is not efficient. To allowffioreacy, a further

linear regression is needed. As will be shown below, the latter is achigvexkiboiting the nonlin-

ear structure of the VARMA innovations in the model parameters. Unlike Blaamd Kavalieris
(1984)’s procedure which is heavy to implement, even in small systems, hosewourth-stage
(efficient) estimator does not explicitly show the echelon-form restrictivesyield a simple and
compact efficient estimator with a simple estimator of its covariance matrix. Howeeief de-

scription of its competitors is required.



4.1. Competing procedures

Using our setup, we stress that running OLS on (3.6) corresponds tiniithestage and the second-
stage estimation procedures of Hannan and Kavalieris (1984) and Retink€1992), respectively.
Denote byn the resulting estimators and gt,, [0 andéj be the implied two-step OLS estimates
of Uy, @ ando;, respectively. Further, designate ythie implied “implicit” VARMA innovation
estimates or residuals such that 3 N

L)Y =fep+0O(L)G, (4.1)

where® (L) = &y — 3P, &L andd (L) = zj‘ioéij, with @y = By. Solving forti, one gets
o ) 5
G=S Ac() [Bovtc— 3 By o o), (4.2)
TZO 7 ( )[ t—1 i; iVi—i—1 ®

wheres?_oA; (7)LT = 6 (L)~. As suggested in the literature [see Hannan and Kavalieris (1984)
and Reinsel et al. (1992)], these implicit residuajsaie approximated (or filtered) with

t+anl

. P .
& (i) = T; /\r(ﬁ)[%yt_r—i;@yt_i_r—u(p}, t=—-nr+1,...,T. (4.3)

Hannan-Kavalieris (HK) procedure:

LetVe (77) = [Lyi — & () Y1, Vi &2 (A) ... ei_p(f)']’ be the regressor vector based
on the two-step OLS residuals () defined above. Also, st () = S.T 1R [V« (7) ®
A¢(7)']. Then, the efficient estimator of Hannan and Kavalieris (1984} fisr

T - -1 T -
Ay = A +{ S 1W (7)ot W (ﬁ)’} > 1W () Zgr &2 (A) (4.4)
t=—nt+ t=—nr+

wherei andfe(nT) are the respective OLS estimatorgpéndZ, obtained from model (3.6). These

authors have then proposeﬁp(mHK) = (Mr+T- 5)‘1232_”T+1+5pt (A, k) Py (A, Auk)s
wherep, (7, Auk) = & (7)) =W () (Auk — 1), as the fourth-stage estimator Bf.

Reinsel-Basu-Yap (RBY) procedure:
Manipulating (2.1), the GLS estimator of Reinsel et al. (1992) obtains frenfiriear regression:

FT = ~
yt(i:’):[\/t(ﬁ)/@)lk]Rn—i_Z)@Jut*J_FDt(r,arl)? t:_nT+l>"'7T7 (45)
J:

wherey; () = yi — & (i) + 3P4 Gj&—; (i) and Dy (71, n) = 300 (85 — ©)) [&—; (1) — w].

Dropping the compound teri; (f7,n) — considered as being negligible — from model (4.5), then
. ~ ~ ~ / ~ ~ ~ ~ i

settingy (7}) = [Y-nr+1.(7)',-. yr ()], V(1) = [Vone 2 (). Ve () andO = 57 4 [LT @

O], whereL! stands for gnr + T) x (ny + T) lag matrix which has ones on th® diagonal below



the main diagonal and zeros elsewhdr (educes to the identity matrix), we get the stacked form
model

y(f) = [V (i) ® ] Rn + O, (4.6)

whereu= [u, .;....,U]’, with Ou having a covariance matrix estimat8 ) = O [In, 41 ®
S0 whereZ, 5y = (nr +T) 'y & ()& (7) and@is ak(ny +T) x k(nr +T) ma-
trix based on the two-step OLS estimates. Therefore, the GLS estimator cfelRetral. (1992)
iS
~ ~ ~ ~ -1 ~ ~_ ~
nRBY:{N[V(n)®lk]:£(%,)[V(n)’®lk]R} RV ()@l =7y (), (4.7)

thus requiring the burdensome task, even in small samples, of invertikgrithe-T) x k(nt +T)
high-dimensional matrix?s(m. An improved version of this estimator is obtained by deleting
the firstkp components of () and p columns ofV (f}) and only retaining thé&(nt +T — p) x
k(nt +T — p) lower right corner block matrix ofs(ﬁ), but it still requires the systematic inversion
of a large matrix.

Poskitt-Salau (PS) procedure:

The second-stage estimation procedure of Poskitt and Salau (1996%tsan running LS on a
variant of (3.6), precisely

G (nr) = [X () @ I R + ¢4, (4.8)

where {, = Z?:oejft—j’ with & = w — G (nr). Further, sev(nr) = [V (nr)’,..., % (n7)'],

X(nr) = [Xa(nr),...., % (nr)] and = [¢¢,..., 5]’ wherel = ©F and& = [£/,..., &']".
Then, the efficient GLS estimator of Poskitt and Salau (1995) is

f;PS:{Fz[i(nT)@@lk}_fL;(},T)[>”<(nT)’®|k]R} RIX(mm)ehl5L 90m),  (4.9)

where, again, one has to inverkd@ x kT high-dimensional matri€, ) = 0 [It ® Z,;)]©’ (es-
timating the covariance matrix @), with © now corresponding to the OLS moving-average pa-
rameter estimates from model (4.8). An improved version gf is obtained in a similar way to

f’RBY'
4.2. Our procedure

Having shown how our setup is practical and flexible to adapt to alternatdeedure, we now
derive our efficient linear estimator. In view of (3.7), the two-step fdaséiS (eventually two-
step OLS) residuals (3.11) are such that

é(nT):Gt(nT)'i‘iéj [ — G (n7) ], (4.10)
=

where, similarly,u; are the implicit VARMA residuals or estimates of matching the two-step
GLS (eventually OLS) estimatar since (4.10) can be expressed as (4.1). Indeed, because the error



termse (nr) in (3.7) are functions of the actual innovatiansit follows that by estimating (nr)

one implicitly and simultaneously estimatas More importantly, (4.10) reveals that these implicit
estimatesy” are endogenous functions not only of the two-step GLS moving ave@gf@oient
estimateéj and the resulting residuads(frr ) as well, but also of the first-stage OLS autoregressive
residualau(nr). Hence, using the fact thé@ (L)~ = T%_,A; (fj) L7, one sees that

= G (nr) + i/\r () [&_« (n7) = G+ (7). (4.11)

This paper proposes a new recursive filtering scheme for approxintagsg implicit residuals
with

(r' z/\r é T nT) tlth(nT)]a tzl?"'aT7 (412)

initiating with & (nt) = G (nt) [hencew () = G (n7)] for 1 <t < p. Precisely, our scheme de-
scribes the pointwise adjustment mechanism through which the approximdiefed) implicit
VARMA residualsu (7)) are recursively computed around fit).

Corollary 4.1 Let{y; :t € Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form giver{hy)—(2.4). Let alsol; be the implicit VARMA
innovation estimates matching the two-step estimgtaas equivalently defined if.2) or (4.11)

but respectively approximated with.3) and (4.12). Then, under AssumptioBsl-3.4,

&~ (A)] = 0p (™) and & —w ()] = Op(p' <75 )- (4.1

Obviously, the recursive schemes (4.3) and (4.12) yield approximatighsifferent (point-
wise) convergence speeds towards the implicit VARMA residuglsegardless of the persistence
degree of the process and the estimation method (OLS or GLS) used famiogptihe two-step
VARMA parameter estimates. However, while noting that we loss®bservations with our re-
cursive scheme, we stress that this is compensated with the use of bettewatited, namely the
first-stage autoregressive residuals that we know are consisteri8.4geOf course, the recursive
schemes above are asymptotically equivalent only when the Kroneckezsrate all equal, namely
when GLS reduces to OLS.

Similarly, it is worth emphasizing that the VARMA innovatian can be expressed from (3.7)
as

z/\r ec r(nr) —Gir (nT)}v (4.14)

and then be approximated with
u () = G (nr +20AT @ c(mr) =G ()], t=1..T (4.15)

Hence,||u; — u (n)|| = Op (p'nr /TY2), in view of (3.4). Also, letS, 5 = T 13 u (i) w (7).



Then its rate of convergence 2y follows.

Proposition 4.1 Let {y; : t € Z} be a k-dimensional stationary invertible stochastic process with
the VARMA representation in the echelon form givena$)—(2.4). Then, under Assumptions
3.1-3.4,

120y = Zull: 125G, = a1l = Op(T72). (4.16)
(L () Yiegee s Yo U () Uep(A)'] with W (77) = e — ue (7).
R [X-r (n) N (n) ] Then manipulating (4.15) and (4.12), one gets

w (i) —w(n) =-2 (f,n) (fi—n). (4.17)

The latter expression can further be rearranged to obtain the lineasségn model

Now, letX; (1) =
Further, seZ’ (,n) =

t
T

w (A) =2 (A7) n+e(A,n), (4.18)

where

w () =w(f)+Z ()i and &(f,n)=uwn)+[Z{A)-Z {An)] ([-n), (419

with Z (77) = SR [X—r (1) ® A (7)']. Note that (4.17) is an identity obtained by exploiting
the nonlinear structure of the VARMA innovations in the model parameterg.ddes not stand for
a Taylor expansion. More importantly, the complex dynamic structure of tioe ®rmse; (7},1)
driving the process (4.18) — missed by Hannan and Kavalieris (1984ginftlurth stage — is com-
pletely specified up to the unknown parameter vegtpsee (4.19). Hence, once estimated, these
errors provide a closed form solution for computing accurately the appate implicit VARMA
residuals or innovation estimates matching the three-step efficient linear estiimattove shall
define below. Such a result has not been established yet in the literature.

In view of (4.17) and (4.19) [or (4.18) and (4.19)], one sees, by Leudaf Kreiss and Franke
(1992) and (3.9), thalfe; (7,n) — u (7) || = Op(T~2), which suggests obtaining a third-stage
GLS (fully efficient) linear estimator af, sayf, such that

—

_argmlnzl J & (A1) = Qxin Wk i) (4.20)

where Qs = {T 1310 () 5,32 (A) |~ andWikg) = T2 3102 () 5,3 @ (7). Fur-
ther, letQy sy = T30, 2 (7) 2] U (). Then, in wewofwt( ) [see (4.19)],

A = i + Qx(i) Ax (i) - (4.21)

Clearly, our third-stage GLS estimators are different from their competsioce alternative
regressors and weighting matrix are used in their computation. Precisebxplat the explicit
form of the second-stage regression residuals to derive a nevsnexiiltering scheme for approx-
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imating the implicit VARMA residuals matching the two-step estimator [see (4.12)gs@&hwell
behaved approximate residuals stand for "new regressors” whitike ypredecessors [see (4.3)],
depend on consistent (better) initial values, and explicitly take into ac¢barituncation error of
the first-stage autoregression along with some adjustments with respect éztinelstage regres-
sion residuals. Finally, it is noteworthy thatis asymptotically equivalent to ML under Gaussian
errors since‘% n= = —%4 () [see (4.17)], and that it corresponds to an iteration of the scoring
algorithm starting frondj, in view of (4.21).

Another feature characterizing the computation of our fully efficient estirmattompared to
those of Hannan and Kavalieris (1984) and Poskitt and Salau (198B)the exception of Reinsel
et al. (1992), consists in using a weighting matrix exhibiting faster rate afezgence, hence better
sample properties; see (3.13) and (3.5) versus Propos#idngiowever, we stress that, although
Reinsel et al. (1992) procedure’s relies on a refined weighting matsi|liuses filtered residuals
from an alternative scheme.

~ . c 4 o x -1 B -1

Now, 1etQs ) = {TflleZ{)(n,n)Zu(%,)Zt (n,n)’} andQx ) = {E[ZtZu 12#}} , with

Z =39 R [%-r®A:(n)']. Also, denote byjA||? the largest eigenvalue 8fA, for any matrixA.
Proposition 4.2 Let {y; : t € Z} be a k-dimensional stationary invertible stochastic process with

the VARMA representation in the echelon form givendg¢)—(2.4). Then, under Assumptions
3.1-3.4,

Qi) — Qxm Il 1@y — Qi 11 = Op (T2). (4.22)

The next theorems establish the convergence and the asymptotic normalityefficient esti-
mator.

Theorem 4.1 Let {y; :t € Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form giver{dy)—(2.4). Then, under Assumptio3sl-3.4,

1A —nl|l=0p(TY2). (4.23)

Theorem 4.2 Let{y; : t € Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form giveridg)—(2.4). Then, under Assumptio3sl—3.4,

TY2(f—1n) =% N[0,Qx(y)]- (4.24)

T—ow

A consistent estimator of its asymptotic covariance matrix is §gf_, Z; (1) iu*(,%])zt () }7

As mentioned above with respect to (4.19), we suggest better filteringeaely from the third-
stage regression residuag 1, 1), well-behaved VARMA innovation estimates in finite samples,
sayu (1), such that:

e (i, A)=w () +[ZA) -z 7[.7)] (F-A), t=p+1...T, (4.25)

where & (71,7) = @ (7)) - Z (1)’ and Z¢ (7,7) = SC5R X (7)) @ Ac(7)']. Finally, let

11



Sum) = (T—ﬁ)_lth:5+1ut(ﬁ)ut(f))’ be the resulting third-stage efficient estimator of the
VARMA innovation covariance matri¥,. Then its rate of convergence follows.

Proposition 4.3 Let {y; : t € Z} be a k-dimensional stationary invertible stochastic process with
the VARMA representation in the echelon form givendyt)—(2.4). Then, under Assumptions
3.1-3.4,

1Zu) = Zu]| = 0p(T742). (4.26)

To roughly show to which extelip(MHK) is less accurate thafh(@ in estimatingy, in finite
samples, assume for simplicity that the HK procedure us@$) and 2,5 instead ofe; () and
2enr)- ThereforeW (77) = Z (77), Nuk = N and thenp, (7, Npk) = & (77,7). Hence, in view of
(4.25), our well-behaved error covariance estimator suggested @&ob¥erderT 1 more accu-
rate than the one by the fourth-stage of Hannan and Kavalieris (1984jimating the VARMA

innovation covariance matrix,, since

o (A Ank) — || = [u(A) —w|[+0p(T™F),  t=p+1...T (4.27)

5. Simulation study

The small-sample performance of our proposed estimators is studied with Karite(MC) sim-
ulations. We only focus on the fully efficient estimates since they stand fan#jer contribution
of the paper. Specifically, we consider a comparative study involvingeteoggested by Hannan
and Kavalieris (1984) (HK), Reinsel et al. (1992) (RBY) and Poskitt 8alau (1995) (PS), respec-
tively. In these simulations, the improved versions of the last two estimatocsilges above were
used. In addition, two versions of our proposed three-step estimayof,Shand TS2, were con-
sidered. The first one relies on the two-step GLS estimator given in (308g the second is based
on the two-step OLS estimator studied in Dufour and Jouini (2005). Obyidi®&l and TS2 are
identical when the Kronecker indices characterizing the echelon caéoim are all equal. While
noting that a two step OLS estimation has been used for obtaining the GLS estimiaktannan
and Kavalieris (1984) and Reinsel et al. (1992), those of Poskitt ateai$1995) were obtained by
implementing their three-step procedure in full. Of course, all competing (&ffigient) estima-
tors are asymptotically equivalent to ML estimators since they roughly qaonesto one iteration
of the Gauss-Newton algorithm, starting from/d -consistent estimator. Finally, ML estimation
was omitted in the simulations for the following reasons. First, its finite sample piepdave
been extensively studied in the literature and were found more or lesastirgfgiven the model
at hand. Second, besides the fact that state-space formulation basestimation of VARMA
models still requires potentially high evaluations of the EM algorithm, more eslyeitiabig or
persistent systems, it also fails to handle the parsimonious echelon foamgiarization since it is
not guaranteed that the resulting estimated echelon VARMA models are stgtaomhinvertible.
Third, in big systems, nonlinear estimation procedures cannot compete wihnirethods from the
computational cost viewpoint, especially for simulation-based inferering beotstrap methods or
maximized Monte Carlo (MMC) tests [see Dufour (2006) and Dufour amihd$2006)]. Finally,

12



as the paper deals with efficient linear estimation methods for VARMA modelsniysstudied the
finite-sample performance of the main procedures compared to the oneggested.

We simulate two bivariate stationary invertible Gaussian ARMA processes with and re-
spective Kronecker indiced,2) and(2,1), using sample sizes 100 and 200. Simulation results on
the bias (in absolute value) and MSE of the estimates for each proceeéugeran in Tables 1-4.
These tables also show the MSE ratios of the alternative fully efficient estisnatth respect to
TS1. These results are based on 1000 replications using GAUSS randuober generator. To
avoid numerical problems due to initialization, extra first 100 pseudo-daegenerated then dis-
carded. Trials associated with estimates implying noninvertible VARMA presas® thrown then
replaced. In all simulations, the rate of replacement did not exceed 5% otts¢ case. The two-
step echelon parameter estimates were obtained from models using, asoegrautoregressive
residuals associated with autoregression truncation set to the integef [reFtthenT ~1/2, since
it has been recommended in the literature to choose the truncation ordeebehgse two values.
This strategy has been considered to draw the effect of the first-sitgyegression lag-order choice
on the finite sample properties of the echelon parameter estimates. Theogeace matrix with
011=.49,02,=.29 ando12 = 021 = —.14, is used for both simulated models. The parameter val-
ues of the simulated echelon VARMA models as well as the resulting eigenv@essribing the
persistence degree of the model) are given in the tables. For a betterrmmpeith HK and RBY
procedures, the latter are finally computed after discarding thexfingtlues of the residuals (1)
[namely,&_n.+1(7),..., €0(7); see (4.3)] to avoid, though partially, problems due to initialization
since preliminary simulations (that we omitted) showed poor HK estimates.

For both models, simulation evidence shows that, unlike TS1, TS2 and RBY dsetittose
respective estimates show small to moderate bias, HK and PS procedidessjimates with sub-
stantial bias associated with relatively significant MSE Toe= 100 [see upper panels of Tables
1 and 3]. These biases decrease with the sample size [see Tables tlis4$udpected that the
bias associated with PS procedure is due to the weighting matrix used in thetetiorpof the
estimates. Poskitt and Salau (1995) argued that the error term in their leggassion follows a
moving-average process of ordgrnamely(, = y_, ©;&;_; with T iyl1&& =0p(n/T)2,
[see Hannan and Kavalieris (1986) and Poskitt and Salau (199%)|nstead, they usefiu(nT)
which we know isOp(1)%,. The bias associated with HK procedure may be attributed to using
more or less well behaved filtered residuals in finite samples, and a weighttng mesmatching
the one iteration of the scoring algorithm (starting from the two-step OLS estindtefact, they
use the third-stage error covariance estimator of their procedure irdtdaone associated with a
faster rate of convergence, namely the one based on the filtered tesiduassary to their fourth-
stage estimation. Although RBY procedure uses the same filtering schemetK thethod, it
relatively delivers estimates with satisfactory finite sample properties. Thigiperhaps to using
an error covariance estimator with better small-sample properties as a weigatirigin their GLS
linear regression.

It is well known that approximating VARMA models having highly persistent Mperators
usually requires autoregressions with many lags, and vice versa. Alsmxmating nonpersistent
VARMA models with autoregressions using many lags would result in estimatesigiier bias
and/or MSE. This exactly occurs with TS1 and TS2 procedures for thed@t VARMA model with
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Sample Sizd =100

nr Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

4 Hoa .000 .009 .010 .001 .011 .009 .200 .200 .257 .204 .190 1.000 1.286 1.020 .952
oo .000 .003 .004 .001 .004 .000 145 146 179 .151 .123 1.006 1.231 1.039 .845
©111 1.200 .020 .020 .005 .018 .008 .056 .057 .079 .057 .051 1.001 1.390 1.012 .896
<p12:1 .240 .000 .000 .003 .001 .009 .046 .046 .062 .047 .044 1.001 1.361 1.018 .969
cpzz_'l 400 .005 .000 .015 .000 .135 111 .106 .134 115 .181 956 1.205 1.033 1.622
cp21_'2 -.900 .005 .008 .013 .006 .089 .078 .074 .094 .077 .121 950 1.212 .987 1.558
(p22:2 -.270 .002 .000 .005 .002 .048 .068 .068 .086 .073 .083 1.000 1.270 1.082 1.224
911;1 .800 .015 .014 .025 .013 .210 .096 .097 .111 .097 .219 1.004 1.153 1.013 2.274
0211 .500 .007 .004 .025 .002 .081 .090 .089 .102 .095 .115 994 1.136 1.060 1.274
0121 400 .018 .017 .104 .024 .213 117 .118 .185 126 .239 1.006 1.583 1.081 2.043
0221 400 .037 .030 .059 .033 .168 135 127 .160 .148 .220 941 1.185 1.102 1.630
0212 .340 .035 .028 .004 .030 .334 165 .154 .164 .166 .376 935 .993 1.004 2.274
0222 .850 .073 .067 .204 .078 .406 159 153 .261 .159 418 960 1.639 .997 2.626

10 He 1 .000 .002 .003 .002 .002 .002 206 .208 .266 .211 .199 1.009 1.291 1.025 .969
ud,;z .000 .005 .005 .002 .004 .003 169 .168 .210 .169 .155 994 1.240 1.003 .919
®111 1.200 .024 025 .024 .023 .022 .062 .062 .079 .064 .060 1.009 1.284 1.038 .971
(p12:1 .240 .000 .000 .003 .000 .000 .046 .047 .073 .050 .046 1.007 1.564 1.068 .988
(p22:1 400 .006 .003 .003 .003 .020 105 .102 .110 .111 .107 968 1.046 1.056 1.018
(p21:2 -.900 .014 .012 .005 .007 .003 .081 .078 .088 .079 .078 960 1.082 .983 .970
[ -.270 .003 .002 .001 .000 .007 .064 .064 .075 .070 .064 996 1.174 1.090 .990
611;1 .800 .012 .009 .024 .000 .053 .100 .100 .102 .103 .106 1.006 1.020 1.031 1.062
0211 .500 .000 .001 .005 .006 .009 .090 .090 .096 .095 .094 999 1.066 1.051 1.036
0121 400 .011 .009 .025 .003 .040 122 124 161 .135 .133 1.019 1.321 1.109 1.092
0221 400 .028 .028 .032 .026 .056 A26 122 127 132 127 .974 1.006 1.047 1.007
0212 .340 .019 .022 .039 .026 .066 160 .156 .161 .172 .189 974 1.004 1.077 1.185
0222 .850 .050 .051 .076 .033 .090 147 148 .154 153 .156 1.005 1.043 1.037 1.054

Note — TS1 and TS2 are the three-step GLS estimators based on the tvaLSegstimator and the two-step OLS estimator, respectively. While HK, RRlY a
PS stand for the fully efficient GLS estimators suggested by Hannan aveli&ris (1984), Reinsel et al. (1992) and Poskitt and Salau (182f)ectively. These
estimates are obtained with 1000 replications. The eigenvalues of the aredell .900, .400 and .300 for the autoregressive (AR) opeeatd real .824 and
conjugate -.188.790i (.813 in norm) for the moving-average (MA) operator. Rebat the number of eigenvalues in each of the AR and MA operators &l equ
to the McMillan degree.
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Sample Sizd = 200

nr Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

5 Heo 1 .000 .001 .001 .003 .001 .000 114 114 177 116 .110 1.001 1.547 1.016 .961
oo .000 .000 .000 .000 .000 .000 .094 .094 .119 .093 .094 1.003 1.268 .996 1.006
©111 1.200 .012 .012 .004 .010 .011 .038 .038 .046 .038 .037 999 1.208 1.016 .972
<p12:1 .240 .001 .001 .013 .000 .002 .030 .030 .046 .032 .030 999 1.488 1.048 .991
cpzz_'l 400 .000 .002 .011 .004 .012 .062 .060 .073 .065 .076 968 1.189 1.056 1.232
cp21_'2 -.900 .005 .006 .003 .001 .003 .044 044 .053 .046 .051 982 1.196 1.029 1.157
(p22:2 -.270 .000 .001 .003 .001 .015 .040 .039 .045 .041 .046 984 1.148 1.038 1.164
911;1 .800 .002 .000 .035 .002 .111 .060 .061 .078 .064 .123 1.018 1.301 1.058 2.038
0211 .500 .000 .000 .005 .005 .028 .058 .058 .064 .062 .065 999 1.085 1.063 1.117
0121 400 .005 .003 .081 .009 .093 .075 .076 .134 .085 .130 1.007 1.781 1.132 1.720
0221 400 .011 .008 .029 .011 .023 .073 .070 .080 .081 .080 961 1.103 1.095 1.101
0212 .340 .008 .005 .041 .016 .063 .097 .094 .118 .104 .136 966 1.212 1.068 1.391
0222 .850 .030 .028 .118 .031 .206 .087 .087 .157 .094 .218 993 1.794 1.074 2.490

14 He 1 .000 .004 .004 .004 .003 .004 115 116 .170 .120 .112 1.006 1.472 1.037 .969
ud,;z .000 .005 .005 .005 .004 .004 .093 .094 .115 .097 .090 1.000 1.232 1.036 .968
®111 1.200 .011 .011 .012 .011 .010 .038 .039 .052 .040 .038 1.006 1.351 1.038 .985
(p12:1 .240 .000 .000 .001 .000 .000 .031 .031 .045 .033 .032 1.001 1.433 1.057 1.012
(p22:1 400 .000 .000 .000 .001 .013 .062 .060 .063 .063 .067 975 1.017 1.020 1.081
(p21:2 -.900 .005 .005 .005 .004 .002 .047 .046 .048 .048 .049 985 1.028 1.025 1.035
[ -.270 .000 .000 .001 .000 .005 .039 .039 .043 .041 .040 985 1.085 1.029 1.014
611;1 .800 .001 .004 .000 .011 .019 .063 .064 .064 .067 .061 1.015 1.017 1.062 972
0211 .500 .001 .001 .002 .002 .005 .060 .059 .064 .062 .063 997 1.077 1.035 1.056
0121 400 .000 .002 .002 .008 .017 .079 .079 .086 .083 .083 1.004 1.096 1.054 1.058
0221 400 .010 .008 .010 .006 .020 .072 .071 .074 .072 .071 981 1.032 1.003 .991
0212 .340 .009 .008 .010 .005 .030 .096 .094 .097 .100 .109 982 1.016 1.042 1.138
0222 .850 .021 .020 .027 .009 .038 .088 .087 .086 .089 .089 984 981 1.011 1.008

Note — TS1 and TS2 are the three-step GLS estimators based on the tvaLSegstimator and the two-step OLS estimator, respectively. While HK, RRlY a
PS stand for the fully efficient GLS estimators suggested by Hannan aveli&ris (1984), Reinsel et al. (1992) and Poskitt and Salau (182f)ectively. These
estimates are obtained with 1000 replications. The eigenvalues of the aredell .900, .400 and .300 for the autoregressive (AR) opeeatd real .824 and
conjugate -.188.790i (.813 in norm) for the moving-average (MA) operator. Rebat the number of eigenvalues in each of the AR and MA operators &l equ
to the McMillan degree.
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Sample Sizd =100

nr Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

4 Hoa .000 .001 .001 .001 .000 .001 158 .159 .237 .166 .164 1.007 1.503 1.053 1.040
Ho2 .000 .004 .004 .006 .005 .001 .188 .189 .199 .190 .180 1.006 1.059 1.015 .958
®210 .500 .003 .004 .005 .005 .003 .033 .033 .062 .036 .033 1.020 1.873 1.093 1.004
0111 1.800 .002 .001 .030 .000 .010 .034 .034 .063 .039 .034 1.009 1.817 1.134 1.001
(p21:1 -.400 .037 .041 .016 .045 .038 .096 .100 .179 .112 .095 1.033 1.852 1.155 .982
©rr1 800  .064 .069 .038 .075 .067  .144 .149 252 .166 .142  1.029 1.746 1.148 .982
®110 -360  .005 .007 .157 .011 .053  .111 .112 .246 .130 .116  1.007 2.212 1.169 1.042
(p12:2 -.900 .012 .015 .251 .021 .083 169 .169 .382 .196 .176 1.002 2.261 1.163 1.042
911;1 .330 .055 .055 .024 .043 .118 130 .131 214 .143 .160 1.012 1.651 1.105 1.237
0211 -.180 .016 .016 .085 .000 .087 108 .109 .209 .128 .132 1.008 1.924 1.179 1.213
0121 -.200 .021 .022 .066 .014 .111 141 144 183 154 .169 1.019 1.297 1.090 1.201
0221 -.400 .072 .080 .126 .071 .188 176 .184 .336 .202 .233 1.043 1905 1.146 1.320
0112 -.200 .061 .064 .098 .055 .070 138 .140 .255 158 .129 1.014 1.849 1.145 .940
0122 .920 .024 .032 .334 .015 .191 205 .210 .473 .243 .253 1.027 2.307 1.185 1.234

10 He 1 .000 .000 .000 .005 .000 .001 173 173 198 175 .183 1.002 1.143 1.011 1.060
ud,;z .000 .000 .000 .002 .000 .001 .208 .208 .217 .209 .208 999 1.042 1.004 1.001
®210 .500 .000 .001 .000 .001 .006 .040 .040 .048 .041 .041 1.005 1.190 1.011 1.029
(pn:1 1.800 .001 .002 .000 .005 .005 .038 .040 .046 .044 .039 1.040 1.197 1.139 1.028
(p21:1 -.400 .043 047 .039 .047 .030 116 .118 142 121 112 1.018 1.220 1.040 .966
(p22:1 .800 .081 .086 .076 .085 .069 A72 175 .208 179 .169 1.017 1.208 1.043 .984
011 -.360 .022 .020 .034 .011 .056 115 119 145 128 127 1.031 1.259 1.112 1.103
(p12:2 -.900 .046 .043 .066 .031 .098 A73 176 218 .187 .195 1.021 1.260 1.082 1.126
911;1 .330 .061 .061 .051 .052 .075 139 141 181 146 151 1.015 1.302 1.049 1.084
0211 -.180 .013 .013 .003 .007 .000 123 123 162 .133 .123 993 1.313 1.076 .994
0121 -.200 .031 .030 .032 .025 .045 148 152 .168 .157 .158 1.025 1.132 1.062 1.064
0221 -.400 .095 .100 .097 .086 .089 213 .219 258 .224 213 1.024 1.208 1.049 .997
0112 -.200 .062 .063 .040 .068 .034 143 .148 .187 .158 .132 1.035 1.311 1.103 .926
0122 .920 .071 .073 .107 .043 .122 226 .239 .265 .248 .237 1.058 1.170 1.095 1.048

Note — TS1 and TS2 are the three-step GLS estimators based on the twekSegstimator and the two-step OLS estimator, respectively. While HK, RBY
and PS stand for the fully efficient GLS estimators suggested by HamubKavalieris (1984), Reinsel et al. (1992) and Poskitt and Salalbj188spectively.
These estimates are obtained with 1000 replications. The eigenvaluesbdet are real .800 and a double root .900 for the autoregrggsRjeoperator, and
real -.530 and conjugate -.35@84i (.681 in norm) for the moving-average (MA) operator. Rebat the number of eigenvalues in each of the AR and MA

operators is equal to the McMillan degree.



LT

Sample Sizd = 200

nr Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

5 Heo 1 .000 .000 .000 .002 .000 .000 .078 .079 .103 .080 .081 1.002 1.306 1.019 1.027
Ho2 .000 .000 .000 .000 .000 .000 .083 .083 .084 .083 .081 1.003 1.013 999 .978
®210 .500 .001 .001 .002 .001 .001 .019 .019 .023 .020 .020 1.004 1.185 1.031 1.046
0111 1.800 .002 .001 .016 .001 .004 .023 .023 .035 .025 .023 1.003 1.498 1.080 1.008
(p21:1 -.400 .016 .017 .012 .017 .016 .059 .060 .067 .062 .062 1.013 1.132 1.055 1.058
cpzz_'l .800 .028 .030 .027 .030 .027 .087 .088 .099 .092 .092 1.012 1.132 1.054 1.050
cpll_'2 -.360 .000 .000 .076 .001 .025 .073 .073 .136 .081 .075 1.007 1.858 1.112 1.027
(p12:2 -.900 .002 .002 .119 .005 .040 109 .109 .208 .121 .112 1.007 1.910 1.110 1.026
911;1 .330 .025 .026 .032 .019 .051 .080 .081 .097 .089 .090 1.009 1.214 1.103 1.123
0211 -.180 .009 .010 .008 .003 .052 .069 .070 .099 .077 .082 1.011 1421 1.107 1.190
0121 -.200 .005 .006 .053 .000 .047 .095 .096 .113 .104 .105 1.014 1.194 1.094 1.110
0221 -.400 .025 .029 .103 .021 .089 107 .109 162 119 .136 1.022 1515 1.119 1.277
0112 -.200 .026 .028 .000 .029 .037 .082 .084 .108 .094 .085 1.015 1.308 1.140 1.032
0122 .920 .004 .006 .192 .000 .105 136 138 .275 155 .161 1.013 2.013 1.133 1.179

14 He 1 .000 .003 .002 .003 .002 .003 .082 .082 .082 .081 .084 1.005 1.003 .999 1.028
ud,;z .000 .003 .003 .003 .004 .004 .089 .089 .089 .089 .090 1.005 1.001 1.005 1.015
®210 .500 .001 .001 .001 .001 .000 .021 .021 .021 .021 .023 1.003 1.005 1.002 1.057
(pn:1 1.800 .000 .001 .001 .001 .005 .024 025 .025 .025 .025 1.017 1.027 1.027 1.038
(p21:1 -.400 .016 .018 .017 .018 .014 .062 .062 .062 .062 .067 1.011 1.004 1.010 1.079
(p22:1 .800 .028 .031 .029 .031 .029 .090 .091 .090 .091 .099 1.011 1.001 1.010 1.100
011 -.360 .007 .006 .004 .002 .033 .075 .077 .077 .078 .083 1.019 1.027 1.033 1.098
(p12:2 -.900 .015 .013 .010 .008 .056 12 114 115 116 125 1.018 1.025 1.031 1.113
611;1 .330 .022 .021 .021 .020 .028 .081 .082 .082 .082 .085 1.010 1.011 1.015 1.050
0211 -.180 .007 .008 .009 .008 .003 .072 .072 .074 .074 .076 998 1.020 1.017 1.045
0121 -.200 .011 .011 .012 .010 .021 .096 .098 .097 .099 .102 1.021 1.018 1.033 1.066
0221 -.400 .033 .038 .037 .033 .045 117 121 119 120 .126 1.029 1.016 1.025 1.078
0112 -.200 026 .027 .028 .031 .012 .083 .084 .085 .088 .080 1.014 1.021 1.056 .966
0122 .920 .020 .021 .020 .006 .063 140 145 .144 147 150 1.029 1.028 1.043 1.065

Note — TS1 and TS2 are the three-step GLS estimators based on the twekSegstimator and the two-step OLS estimator, respectively. While HK, RBY
and PS stand for the fully efficient GLS estimators suggested by HamubKavalieris (1984), Reinsel et al. (1992) and Poskitt and Salalbj188spectively.
These estimates are obtained with 1000 replications. The eigenvaluesbdet are real .800 and a double root .900 for the autoregrggsRjeoperator, and
real -.530 and conjugate -.35@84i (.681 in norm) for the moving-average (MA) operator. Rebat the number of eigenvalues in each of the AR and MA

operators is equal to the McMillan degree.



Kronecker indiceg2,1) since the dominant eigenvalue associated with the MA operator, namely
.681 (in norm), is not considered as persistent; see Tables 3 and 4arfiedables show that, given
the sample size, increasing the lag-orderreduces the large bias for HK and PS procedures, and
yields parameter estimates with MSE decreasing for the HK procedure buawitked tendency
for the PS method. Further, while noticing that RBY estimates are charactavite a slight in-
crease in the bias, they exhibit MSE with a mixed tendency. Besides notinthéhbias generally
decreases withr with all methods for the echelon VARMA, 2), we stress that the overall ten-
dency for the MSE is not pronounced. This is due perhaps to the facthindargest eigenvalue
associated with the MA operator, namely .824, cannot characterize the awldsks or highly per-
sistent; see Tables 1 and 2. Simulation results show that, overall, TS1, TSRB¥ methods
outperform those of HK and PS by far. For a better idea on which ptweggrovides estimates
with better sample properties — since we note that those of RBY proceduageba a way quite
similar to ours — we compute the ratio of the MSE of each procedure’s estineddise to those
associated with TS1. Obviously, with the exception of TS2 and PS proegdinose of RBY and
(to a large extent) HK provide estimates with MSE ratios, overall, greater thign dote that the
cases where the MSE ratios of PS estimates are less than unity are sometimet{(y) attributed

to relatively substantial biases characterizing some of the echelon parastateates. These cases
also match some situations where the reduction in the standard deviation dinfeges outweighs
the increase in the square of the associated bias. Further, the frgaqiie¢hese below-unity ratios

is generally increasing withy and decreasing with the sample size. Finally, it is noteworthy that,
while TS2 generally dominates RBY , TS1 has a slight advantage over T&Zh8osing either
TS1 or TS2 would have no significant effect on the small-sample behaivibe sesulting echelon
VARMA parameter estimates for the models studied.

6. Conclusion

This paper proposes a new three-step linear estimation proceduretifonatg invertible echelon
VARMA models. It can be extended to VARMAX or integrated and cointegr&®RMA models
as well. The estimation method focuses on the echelon form parameterizatidarass to deliver
relatively parsimonious models, but may easily adapt to other parameterizatioh as the final
equations form.

Our setup provides simplified and practical echelon parameter estimatesetkasier to obtain
than those of Hannan and Kavalieris (1984), Reinsel et al. (199@Raskitt and Salau (1995). We
extend the results of Dufour and Jouini (2005) to the two-step GLS estimatbshow its consis-
tency and asymptotic normality with strong innovations. Exploiting the explicit fofithe second-
stage regression residuals, we propose a new recursive filteriagiediiased on consistent (hence
better) initial values for obtaining well-behaved pseudo-regressoessary to our third-stage GLS
(fully efficient) estimation. These filtered residuals which approximate the impghd®MA innova-
tion estimates matching the two-step linear estimator, are functions of the firetesttayegression
residuals and the second-stage regression residuals as well. Sokthieydaccount the truncation
error associated with the long-autoregression used in the first-stagg veth some adjustments in-
volving the first two-step regression residuals. Besides this noveltyhimdrstage linear regression
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is derived by exploiting the nonlinear structure of the VARMA innovations imtloelel parameters
without using Taylor expansion. As such, the resulting three-step GiirSager, for which we es-
tablish its consistency and asymptotic normality with strong innovations, thenishagymptotic

equivalence to ML (hence efficiency) under Gaussian innovatiomsjd®s an intuitive interpre-
tation of nonlinear estimation methods such as nonlinear GLS and ML. Althougthee-step

linear estimation procedure is asymptotically equivalent to those by Hanmiakealieris (1984),

Reinsel et al. (1992) and Poskitt and Salau (1995), it is computationally siowpler relatively.

In addition, the asymptotic covariance estimators we gave for the secontliedhdtage echelon
VARMA parameter estimators as well, are simple and more practical for irferespecially in the
context of simulation-based techniques such as bootstrap methods or MCHRimally, by exam-
ining the complex dynamic structure of the third-stage regression residajwovide an efficient
estimator of the covariance matrix of the VARMA innovations, which is of oficieY more accurate
than the one by the fourth-stage of Hannan and Kavalieris (1984).

The small-sample performance of our efficient linear estimators is studiedatethn com-
peting ones, namely those of Hannan and Kavalieris (1984), Reinsél @982), and Poskitt
and Salau (1995). Simulation evidence shows that, in most cases, our ffidlgr¢ estimators
outperform their competitors in terms of bias and MSE for the models studiealsdtstresses
the sensitivity of the small-sample properties of the echelon VARMA paramstienates to the
truncation-order of the first-stage autoregression approximating thatraeations. This suggests
that further investigation should be made in this way for developing efficiertel selection pro-
cedures to estimate accurately the autoregression truncation-lag in finitteesarimueed, such a
truncation may severely affect, through the echelon VARMA parameter de8irthe finite-sample
behavior of the resulting high dynamics or smooth functions of the VARMAes|ogrameters and
innovation variances, such as impulse responses, error varianm@glesition, predictability mea-
sures or long-term forecasts, usually subject of interest in most appdigd

A. Appendix: Proofs

PROOF OF COROLLARY 4.1 Let ®(p) = [~fip, Po,~P1,..., —Pp], @(P) = [~Hep, Po,—P1,..., —Dp] and fi-
of Kreiss and Franke (1992), we show, foe —nt +1,..., T, that

| —ex ()| < ; {IIAc ][+ e @) = Ac ) [ H{ [ @[]+ |8 ()~ @ @[ } Y1 (B ]| = Op (6™ .

(A1)
On the other hand, using (4.11), (4.12), (3.9) and Ler@r2a&f Kreiss and Franke (1992), we show, foe 1,..., T, that

Ja—w @< 3 (A |+ e )~ Ac () {18 () e + e~ e ) |} = Op (11T,

=
(A.2)
since||u;—r — Gi—r (n7)|| and||&—¢ (nT) — W7 || are bothOp (nt /TY2) in view of (3.4) and (3.12), respectively

19



PROOF OF PROPOSITION 4.1 By the triangular inequality,

17 . _
12w $;{I|w0 = e )+ e[ () = ue| } +Op(T2), (A-3)

where||u; () — u|| < [|uc (7) —u (1) ||+ []uc (n) — || with ||ue (7) — u|| = Op(ptnr /T2). Using (4.15) and (4.12),

[Jue (7)) — e (n) || < ZO{H/\T ||||é—r(nT)—Q—r(nT)||+H/\r(fl)_/\r(’7)||||Q—T(nT)_Gt—T(nT)H} (A4)

On substitutinga_r (n7) and€_; (nt) with their expressions in (3.6) and (3.11), and using (3.4), (3.8).l@mma2.2
of Kreiss and Franke (1992), we have:

t—1
2 WA |- (nr) — e (rr ||<k1/zzDHAr D% rm) [[RI[[7 —n[[=0p(T"¥?),  (AS5)
t—1 . B t-1 p B B nr
ZOH/\T(’?)_/\T(U) HHQ—r(nT)—Ut—T(nT) H < ZD ZJ |/\r (n)—Ar(n) HHOjH”Ut—r—j —U—71—j (n7) || :Op<?)-
(A.6)

Hence,||u; (1) —u (1) || = Op(T~%2) and then|u; (/1) — w || = Op(T~%2) + Op(p'nr/TY?), fort =1,...,T. Thus,

(I

T-12), (A7)

u(fi) — %

_ -1
PROOF OF PROPOSITION 4.2 Note thatQ;((ln) is p.d. by definition and IeIDX(n) = {% th:thZlet’} . Then

|

Where||(5;(<ln) - Q)?(lq)H = H% S22, "2 —E[z5'Z]

where, specifically,Qr = T-151 1 Z5. 2 (f,n) —z], Q=T 15 1Zt (5, (l Yz @, ) and, finally,
Q=T 1504 [Z(A,n) ~2]5,7Z (fi.n). In particular, | Q[ < T~ |27 (1,n) — z2|, where,
by invertibility of the VARMA processE||Z H = 0(1). Further,

&b -y <|

it~ =

S~ |+ [l ~ - )

= Op(T~Y/2). Further,

O~ Ol | = llQull +[1Qall + [1sll (A.9)

HZF(ﬁ,n)—ZtHSHRH{ TZO[(xt_T(ﬁ)—xt o) @A) |||+ z‘[xt @A) ] } (A.10)
with . ,
2, KeroArm) ]| < Z”;t” [ (1= 72) ] [Aey (m) ||| ez (m) || = © (P2 (AL1)
and
t—-1
5 (%@ -x-r) e ]| < 5 P -xollae o) a1
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p
with || %7 () — Xt_T||2 = Z)Hut,j,r(ﬁ) - ut,j,r||2. Hence||Z¢ (7,n) — Z|| = Op(T~2) + Oy (p!) and then
J:
[|Q1]| = Op(T~%/2). Using Propositiort.1, we also show thatQ;|| and||Qs|| are bothOp(T~%/2), since||Z (77, n) ||

; o1 A-1 2o—1 —1 201 —1 - ;
is Op(1). Hence (n)_QX(n)H' Qx(ﬁ)_QX(ﬂ)H and Qx(m—me)Hlare allop(T 1/2), Finally,

H@«ﬁ) ’QX(mHl:Op(T’l/Z)- (A.13)

On the other hand,

|Gy~ G, <

" T
zu—(,%)H%t;{Hzt(ﬁ)—zw;,n)HHzt(ﬁ)H+Hz;’(f;,n)}||>Zt<f;>—z(°<ﬁ,n>||}7 (A14)

EJ(%)H = Op(1). Further, by Lemma&.2of Kreiss and Franke (1992),

[Ze(7) =z (f,n) || < [[R| Z {th )= Xt + [Xe | A () = Ac (m)]| = Op(T72). (A.15)
Then, |2 (7) | < |2 (7) ~ 2 (R.m) ||+ |20 (R.m) | = Op (1), Hence| Gk~ G5 [ and |Gy, — G5 |, ave
bothOp (T~%/2). Therefore,
HQXW)*@((f;)Hl:Op(Til/z)- (A.16)
"
Proof A.1 4.1 Note that (4.21) can be rewritten As-n = QX Oy + iy [P iy — P )
WhereQ;z(m:Tflthzlz{’(ﬁ,n)ZJ(%’) (n)andQ’ =T Zt 1Zt( ) %,Ut( ). In addi

tion, letQyp) =T 13, Z5 'w. Then, by the trlangular inequality,

li=nl < lIQxm x| +||Gxs — @xem || Bxcar | + el B — 2o
+| & = G| || Bxn |+ | G || Bxim — B | (A.17)
where||Qx ()|, = Op (1) HQX )|l =0p(T7%/2), while ‘@((ﬁ)*Qx(n)Hla”dHQX(ﬁ)*Qi(ﬁ)Hl

=3 w(n) andss =T-257, [ (71,n) - Z] £,4 w (n). Then

|85~ @xan | < lIstll + 1Sell + 16l (A18)

21



Using the fact thafju; — u (n)|| = Op(p'nr /TY2) and that|vec[B] || = ||B||, we show that

1L e _ 1/2 1/2 n
Ellsil < IRIF 3. 3 e 12 {Elwm -wl*}{El- P} =0(35)-
- (A.19)
Moreover,

Il < | 3258 - =l -w| + F 5 &[5, - 5

3% [~J(:lﬁ) - ZJl} [ (17) — W] H = Op(nt/T?). Further, using Proposi-

: (A.20)

where, as in (A.19),
tion 4.1,

1T

HTtZth[SU_(%)_Zu_l]UtHS 5.4 -

}: Op(T™1), (A21)

PG ES TS

= Op(T~1/2), by the VARMA structure ofy;. Hence,||S|| = Op(T72).

R

Finally,

ISl < [|2z5 H+H92ﬁ I (A22)
wherte( =T 50 [z (An) - Z) 553 [w(n) — w] and Q%5 = T34 [Z (A.n) -
zt]z( U Also,

1Rzl < 1|9z zin |l +11Qz5 [, with (A-23)
T
Q) = %ZZ\R’N r@A () 1254 [ () — ], (A.24)
1 T t-1 Mes
Qf) = TZl%R’[ “X b @A) |5k [wm-ul,  (A25)
T t—-1 .
Qfs) = %ZZ)R/[ Yo (m)} @A (n) |55k [w(m) —u],  (A.26)

whereX () = [Lw(n) Yi_1,--- Y pt-1(n) ..., u_p(n)'] andv () =y — t (7). Simi-
larly, we have

1227

e } Op(z35):  (A2D)

>H{$éi\\/\r(n) 1| fwe ) -
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sinceE(% S e||A(n) HH (U (17) — ] X ) = O(nr/T%/2). Further,

- N\ Y21 )\ V2
9% < IRI| 23 {7 3 e -wl (5 I IF) (3 Ieerm-x-dl?)
0 (A.28)
where ||X¢(n) —XHH = XJP:OHUFJ'*T(’” — U j— TH2 with Elju_j r(n) — wj- TH =

O(pt 1T /TY2). Hence,||X_r (1) — X« ||* = Op(p2t- V12 /T) and thens’ 3 X
thrHZ =0p(n/T). Therefore,HQZl(zﬁ) | is Op(ng /T2). On the other hand,

L5 3 (S I -l -xco]) b 429

with || X (A7) — X—c (1) HZ—ZJ_oHUt i—r () — w1 ( )H Therefore, we geﬂQ13 | =
Op(nr/T?), since||u (n) — w|| = Op(p'nr/TY2) and ||u (7) — u (n) || = Op(T/2). Hence,
HQzl(ﬁ)H = Op(nr/T%2). Further,

12l < [zl + 11225 H+HQZ3 ,  with (A.30)
1Ll 2
Ul = TZZW r@A(N) ] &5 (A31)
2 1 T t-1 e
Q7)) = TZlZOR’[ ><t—r}®/\r(n)}2u(,~,)ut, (A.32)
o3 1 T t-1 e
Q) = TZLZ)R/[ (n)}®/\r(n)}2u(,~,)ut, (A.33)

Similarly,

122

{25 S Inmluxcd} oy, asy

sinceE (% STLs= A ()| Hut)({TH> — O(T). Hence]| Q2L [| = Op(T ). Further,
HA O"(T3/2>

AI{3 5 3 Il bk -x) } -
(A.35)

1/2 1/2
sinceE[a] < 457357 [Ac () [[{E[luere|*}{EIX () =% *} " = O(ne/T%). Fur-
ther,

122

12255

}, (A.36)

B T-1 1 I !
Z(%)H{ T; H/\r (n) H HTt_ZHUt [Xt—r (1) — X1 ('7)]
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2 2

! /

where (|35 w[X_r(7) = X—c(N)]|| = Zjﬁ:o 1y (A) — W jc(n)]
with .
173 @] <ov+s. (n37)
t=1+1
where
1 T t-1-1 , . , T-1-1 .
2 = |17 Y e v () =Gy ()] A @ - A ]| < S Aul|A @ -Av ()],
t=1+1 v=0 v=0
1 T t1-1 . T -1
Ay = T z Ut[é—r—v(nT)_ec—r—v(nT)] (’7 Z AZZHAV } (A.38)
t=1+1 v=0
1z . /
=[5, 3 siaem-aomi] o) =
T
Dy = & Z ut[r]—ﬁ]/R'[)N(tTV(HT)®|k}':Op(T1). (A.40)
Tt:r+v+l

Therefore, using Lemm2.2 of Kreiss and Franke (1992} = Op(ny/T%/2) andA, = Op(T71).
Il () — e (m)] ‘ T3l [Xor () = %o ()]’

| Q2% || are allOp(T~1). Hence||QZ 4 || and||Ss|| are bothOp(T1). Thus,Hf))’((ﬁ) _QX(”)H =
Op(T1). Likewise,

It follows that, and

IN

|8x - %] < IRI{lI )MQX Sl +lml}  with (a4

r T t—

Ol - Rvec z“ e @)= A () 58 [ ()~ ) e () - X842

T t—

Q% = R/vec%X1 [Ac (A) — n)]”(%,)[ut(ﬁ)—ut]m_r’}, (A.43)
T f . |

% = erCfZ“ [Ac (@) = Ac ()] Q%)ut[mm)—xu]} (A.44)
T Ny

Qs = R’VGC;Z n)]Zu(%)utX”/] (A.45)

Using the same arguments as before, we sed]tﬁé{m = Op(T~%/2), while HQi(ﬁ) (B HQ>3((,~” I
and || Qf 7, (T-1). Thus, Hf)x(f,) - éi(ﬁ)“ = Op(T~1). Similarly, we show that
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Hf);(ﬁ) — 'QX('?)H = Op(T~1). Further, using the fact that

[@xa

< (|85 |+ [xa = B5ia | < ]2en | + | B5m) ~ @cn | + | B~ B |
(A.46)

we conclude tha\HQX H = Op T 1/2) Finally, H” ’7H —Op(T 1/2)

ProofA.2 4.2 Let the random vector§y ;) = Tl/z{éx(f])éx(ﬁ) + Qi) [f?;((ﬁ) - f);(ﬁ)]} and
Sk(n) = TY2Qx () Qx(n)- Then,

éxm)—sx(n)H < Tl/z{‘ XK

_Qx<,,)H1H¢;<,~,>H+u%ulu%—meH

#@n) -G | B

H} (A.47)

Using Propositiodt.2and Theorerd.1, we show thaHSqﬁ) —S(n) H = Op(Tfl/z). Therefore, by

the central limit theorem for stationary processes [see Anderson (B@&ttion 7.7), Scott (1973,
Theorem 2) and Chung (2001, Theorem 9.1.5)] and the assumptionepfedndence betweenand

1/2 d -1
Z:, we haveT Y20y ) %+ N [0, me)]. Hence,
TY2(7 —n) = Sz - 4N [o Qx( } (A.48)
PrROOF OoF PROPOSITION 4.3 Note that (4.25) reduces to
w () =u (f)+2 (7.0) (fi—A), (A.49)

sincegt (71,7) = wx () — Z (7)) A and e (7) = u () +Z ()’ fj. Therefore, using Lemma.2 of Kreiss and Franke
(1992), Propositiod.1, (3.9) and Theorem.1, we get:

o () = wl| = [l () = w125 .2 [ {113 =l + 17— 0|} = Op(T~*2) +0p(Pt%)a (A-50)

fort = p+1,...,T. Then as in Propositios.1, we show thaf| 5,5 — Zuf| = Op(T~Y/2). m
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