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asymptotic approximations can easily be unreliable in such cases, for standard regularity conditions 

may not apply or may hold only weakly. This paper proposes finite-sample tests and confidence sets 
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1. Introduction

Vector autoregressive (VAR) modeling has received considerable attention, especially in time series
econometrics; see Lütkepohl (2001, 2005), Hamilton (1994) and Dhrymes (1998). This popularity
is due to the fact that such models are easy to estimate and can account for relatively complex
dynamic phenomena. However, besides it often requires a very large number of parameters to
produce a good fit, the VAR specification is not invariant to many basic lineartransformations. For
instance, VAR subvectors follow VARMA models. Temporal and contemporaneous aggregations
lead to mixed VARMA processes [Lütkepohl (1987)]. Also, trend and seasonal adjustments lead to
models outside the VAR class [Maravall (1993)]. The VARMA structure includes VAR models as a
special case and can reproduce in a more parsimonious way a broader class of autocovariances and
data generating processes, which can improve estimation and forecasting;see L̈utkepohl (2006) and
Athanasopoulos and Vahid (2008).

VARMA modeling has been proposed long ago [see Hillmer and Tiao (1979),Tiao and Box
(1981), Reinsel (1997) and Lütkepohl (2005)] but has been of little use in practice. Indeed, besides
fulfilling potentially complex restrictions to achieve identifiability, the task is compounded by the
multivariate nature of the data. Once an identifiable specification has been formulated, different
estimation methods are considered. But the most studied is ML with strong Gaussian errors; see
Hannan (1969a), Hannan, Kavalieris and Mackisack (1986), Mauricio (2002, 2006), and Gallego
(2009), among others. However, maximizing the exact likelihood in stationaryinvertible VARMA
models is computationally burdensome. Tiao and Box (1981) stressed that it ismuch easier to
maximize a conditional likelihood, though numerical problems still occur with high-dimensional
systems in lack of suitable initial values. Recently, Metaxoglou and Smith (2007)studied the iden-
tification and ML estimation of VARMA models using EM algorithm-based state-space methods.
Although this can yield improvements over earlier ML approaches, we note that recovering the
echelon VARMA coefficient estimates from the state-space formulation may not necessarily lead
to stationary and invertible models. Further, the Gaussian ML estimation of VARMA models still
requires potentially lengthy iterative optimization over a high-dimensional parameter space. Thus,
in high-dimensional systems, nonlinear estimation procedures cannot compete with linear methods
from the computational cost viewpoint, especially when simulation-based inference is required.

Recursive linear regression methods, initially proposed by Hannan and Rissanen (1982) for
ARMA models, have been extended to the VARMA case; see Hannan and Kavalieris (1984), Rein-
sel, Basu and Yap (1992) and Poskitt and Salau (1995). It consists in estimating, by least squares
(LS), the innovations of the VARMA process from a long autoregressionto then be used as re-
gressors to estimate the VARMA parameters. Finally, a linear regression on transformed regressors
involving newly filtered residuals is performed to achieve efficiency. Note that this multistep linear
estimation was initially introduced for model selection and for obtaining consistent estimates which
can be used to initialize nonlinear methods, such as ML. The seminal paper byHannan and Kava-
lieris (1984) proposed a four-step linear procedure for specifying and estimating stationary ARMAX
systems. The first three steps focus on model specification and on providing initial estimates, using
Toeplitz regressions based on the Levinson-Whittle algorithm. However, these estimates are sub-
stantially biased especially when the ratio of the autoregression-order to thesample size is too large
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[Hannan and Deistler (1988)]. Finally, using a GLS regression, the fourth stage yields asymptoti-
cally efficient estimates. Reinsel et al. (1992) analyzed the ML estimation of VARMA models from
a GLS viewpoint. Modulo some approximations allowing for the asymptotic equivalence between
GLS and ML, they derived a linear regression with error terms following a moving average (MA)
process. However, their analysis underscores the heavy computational burden of the method since
it systematically requires the inversion of a high-dimensional weighting matrix. Inspired by Kor-
eisha and Pukkila (1990), Poskitt and Salau (1995) investigated the relationship between the GLS
and Gaussian estimation of echelon form VARMA models. Although asymptoticallyequivalent to
ML, their estimates are substantially biased in finite samples. With a simulation study comparing
selected linear methods on the quality of the estimates and the accuracy of implied forecasts and
impulse responses, Kascha (2007) highlighted the overall superiority ofthe fourth-stage linear esti-
mation procedure of Hannan and Kavalieris (1984), while noting situations where the investigated
methods do not perform very well.

For making VARMA modeling practical, one needs estimation methods that are simple,quick
and easy to implement with standard software. More especially as large-sample-approximation-
based inference in high-dimensional dynamic models is unreliable, and that simulation-based pro-
cedures, such as bootstrap techniques, are rather recommended. However, such methods are im-
practical if computing the estimator is difficult or time consuming. In this paper, westudy two
linear estimators for stationary invertible echelon form VARMA models with known Kronecker
indices. We focus on the echelon form since it often tends to deliver relatively parsimonious pa-
rameterization (involving fewer free parameters) than equivalent identification schemes, such as the
final equations form; see Lütkepohl (2005). Our setup easily adapts to cointegrated VARMA and
VARMAX framework and alternative identifying schemes. The first estimatoris a GLS version of
the two-step LS estimator studied in Dufour and Jouini (2005), using a more general setup. The
second is a new relatively simple three-step linear estimator which is asymptoticallyequivalent to
ML. Unlike predecessors, it relies on the novelty that consists on using, among the regressors, fil-
tered residuals which take into account the truncation error of the first-stage long autoregression,
based on a newly proposed recursive scheme using consistent initial values. It can also be inter-
preted as a one-step estimator by the scoring method, starting from a

√
T-consistent two-step linear

estimator. The proposed estimator is computationally much simpler and more practical than the
ML estimator and earlier asymptotically efficient “linear” estimators, namely thosesuggested by
Hannan and Kavalieris (1984), Reinsel et al. (1992), and Poskitt andSalau (1995). As such, both
of the estimators studied provide a handy basis for applying resampling inference methods (e.g.,
bootstrapping).

We show that both estimators are consistent and asymptotically normal with strong innovations.
Besides being computationally simpler, our efficient estimator shows distributional theory with ex-
plicit formulae of its asymptotic covariance matrix which is relatively simple and easy to estimate
for inference purpose. Also, exploiting the complex dynamic structure of the third-stage regression
residuals, we derive an efficient covariance estimator of the VARMA innovations, which is of order
T−1 more accurate than the one by the fourth-stage of Hannan and Kavalieris (1984). Finally, finite-
sample simulation evidence shows that two versions of our fully efficient estimator outperform the
multistep linear estimators studied.
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The paper proceeds as follows. Section2 presents the echelon form VARMA setup. Section
3 derives the two-step GLS estimator and gives its properties such as convergence and asymptotic
normality. Section4 provides a heuristic derivation of the three-step GLS estimator then states its
convergence and asymptotic efficiency. Section5 shows a comparative simulation study on the
finite-sample performance of competing procedures. Finally, Section6 concludes. Proofs are given
in AppendixA.

2. Framework

Let {yt : t ∈ Z} be ak-dimensional random process with the echelon-form VARMA representation

Φ (L)yt = µΦ +Θ (L)ut , (2.1)

whereΦ (L) = Φ0−∑p̄
i=1 ΦiLi ,Θ (L) =Θ0+∑p̄

j=1Θ jL j , p̄= max(p1, . . . , pk) given a vector of Kro-

necker indices(p1, . . . , pk)
′, L denotes the lag operator,Θ0 = Φ0, with Φ0 a lower-triangular matrix

whose all diagonal elements are equal to one,µΦ = Φ (1) µy, with µy = E(yt), and{ut : t ∈ Z} is
a sequence of multivariate innovations. The echelon VARMA operatorsΦ (L) = [φ lm (L)]l ,m=1,...,k
andΘ (L) = [θ lm (L)]l ,m=1,...,k are left coprime and satisfy a set of restrictions such that, on any given
row l of Φ (L) andΘ (L), φ lm (L) andθ lm (L) have the same degreepl with

φ lm (L) = 1−
pl

∑
i=1

φ ll ,iL
i if l = m,

= −
pl

∑
i=pl−plm+1

φ lm,iL
i if l 6= m,

(2.2)

θ lm (L) = ∑pl
j=0 θ lm, jL j with Θ0 = Φ0, (2.3)

plm = min(pl +1, pm) for l ≥ m,
= min(pl , pm) for l < m,

(2.4)

for l ,m= 1, . . . , k. Note thatpl = pll is the number of free varying coefficients on thel -th diagonal
element ofΦ (L) as well the order of the polynomials on the corresponding row ofΘ (L), while plm

specifies the number of free coefficients in the operatorφ lm (L) for l 6= m. ∑k
l=1 pl is the McMil-

lan degree andP = [plm]l ,m=1,...,k is the matrix formed by the Kronecker indices. This leads to

∑k
l=1 ∑k

m=1 plm autoregressive (AR) andk∑k
l=1 pl MA free coefficients, respectively. For proofs on

the uniqueness of the echelon form and other identification conditions, oneshould consult Hannan
(1969b, 1970, 1976, 1979), Deistler and Hannan (1981), Hannan and Deistler (1988), and L̈utkepohl
(2005, Chapter 12).

The process (2.1) is said to be stationary and invertible with respective pure infinite-order AR
and MA representations:

Π (L)yt = µΠ +ut and yt = µy +Ψ (L)ut , (2.5)
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where Π (L) = Θ (L)−1 Φ (L) = Ik − ∑∞
τ=1 ΠτLτ , Ψ (L) = Φ (L)−1Θ (L) = Ik + ∑∞

v=1ΨvLv, and
µΠ = Π (1) µy, if respectively det{Φ (z)} 6= 0 and det{Θ (z)} 6= 0 for all |z| ≤ 1 (z∈ C), with
det{Π (z)} 6= 0 and det{Ψ (z)} 6= 0 for all |z| ≤ 1, Further, real constantsC > 0 andρ ∈ (0,1) exist
such that

‖Πτ‖ ≤Cρτ and ‖Ψv‖ ≤Cρv, (2.6)

where‖.‖ is Schur’s norm,i.e. ‖A‖2 = tr [A′A] for any matrixA. Also, let∑∞
τ=0Λτ (η)zτ = Θ (z)−1.

Then by invertibility‖Λτ (η)‖ ≤Cρτ , whereη is the vector of all free varying parameters implied
by the echelon form, as shall be specified below.

Now, setvt = yt −ut . Then the latter is uncorrelated with the error termut since

vt = Φ−1
0

[

µΦ +
p̄

∑
i=1

Φiyt−i +
p̄

∑
j=1

Θ jut− j

]

. (2.7)

Also, let Xt =
[

1,v′t ,y
′
t−1, . . . , y′t−p̄,u

′
t−1, . . . , u′t−p̄

]′
and β = vec

[

µΦ ,Φ̄0,Φ1, . . . , Φp̄,Θ1, . . . , Θp̄
]

,
whereΦ̄0 = Ik−Φ0, be two vectors of respective sizeskh+1 andk2h+ k, with h = 2p̄+1. Then
the echelon restrictions (2.1) - (2.4) imply a uniquek2h+k by r full-rank columns matrixR formed
by r selected distinct vectors from the identity matrixIk2h+k such thatR′R= Ir andβ = Rη , where
η is anr-sized vector of free varying parameters withr < k2h+k, so that (2.1) takes the form:

yt =
[

X′
t ⊗ Ik

]

Rη +ut , (2.8)

where
[

X′
t ⊗ Ik

]

R is a k× r matrix. Further, under the assumption that the process is regular [by
means, with nonsingular covariance matrix of the innovations in the Wold decomposition, so that
the process is not linearly predictable and has a nonsingular instantaneouscovariance matrix] with
continuous distribution, the echelon form ensures thatR′[Xt ⊗ Ik

]

has a nonsingular covariance
matrix, so that rank

{

R′[ΓX ⊗ Ik
]

R
}

= r, whereΓX = E
[

XtX′
t

]

.

3. Generalized two-step linear estimation

Let
{

y−nT+1, . . . , yT
}

be a random sample of sizenT + T wherenT is a sequence, function ofT,
such thatnT → ∞ asT → ∞. Further, consider the infinite-order autoregression (2.5) “truncated” at
the lag-ordernT , precisely:

yt = µΠ(nT) +
nT

∑
τ=1

Πτyt−τ +ut (nT) , (3.1)

whereµΠ(nT) andut (nT) stand respectively for a constant term and a compound innovation, such
thatµΠ(nT) =

(

Ik−∑nT
τ=1 Πτ

)

µy andut (nT) = ∑∞
τ=nT+1 Πτ

(

yt−τ −µy

)

+ut . The following assump-
tions on the VARMA innovationsut and the truncation ordernT of the long autoregression are
needed to establish the consistency and asymptotic distribution of the linear estimators studied be-
low.
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Assumption 3.1 The vectors ut , t ∈Z, are independent and identically distributed(i.i.d.) with mean
zero, positive definite (p.d.) covariance matrixΣu = E(utu′t) and continuous distribution.

Assumption 3.2 There is a finite constant m4 such thatE
∣

∣ui,tu j,tur,tus,t
∣

∣ ≤ m4 < ∞ , for all t and all
1≤ i, j, r, s≤ k.

Assumption 3.3 nT is a function of T such that nT → ∞ and n2
T/T → 0 as T→ ∞ , and, for some

c > 0, 0 < δ 1 < 1/2 and T sufficiently large, nT ≥ cTδ 1.

Assumption 3.4 nT is a function of T such that nT → ∞ and n4
T/T → 0 as T→ ∞, and, for some

c > 0, 0 < δ 2 < 1/4 and T sufficiently large, nT ≥ cTδ 2.

Assumption3.1entails a strong VARMA process, while Assumption3.2ensures that the empir-
ical autocovariances of the process have finite variances. Assumptions3.3and3.4show alternative
conditions on the truncation lagnT of the first-stage long autoregression, which are required to en-
sure convergence and asymptotic normality of the estimators suggested. These assumptions state
thatnT should grow towards infinity neither too fast nor too slowly. Further, by invertibility, ‖Πτ‖
decays at an exponential rate [see (2.6)]. Hence, for someδ > 0, whenevernT = cTδ̄ for somec> 0
andδ̄ > 0,

Tδ
∞

∑
τ=nT+1

‖Πτ‖→ 0 asT → ∞ . (3.2)

Let Π̃ (nT) =
[

µ̃Π(nT),Π̃1(nT) , . . . , Π̃nT (nT)
]

= W̃Y(nT)Γ̃ −1
Y(nT) be the LS estimator of the co-

efficient matrixΠ (nT) =
[

µΠ(nT),Π1, . . . , ΠnT

]

, whereW̃Y(nT) = T−1 ∑T
t=1ytYt (nT)′ andΓ̃Y(nT) =

T−1 ∑T
t=1Yt (nT)Yt (nT)′, with Yt (nT) =

[

1,y′t−1, . . . , y′t−nT

]′
. Further, let

ũt (nT) = yt − µ̃Π(nT)−
nT

∑
τ=1

Π̃τ (nT)yt−τ , t = 1, . . . ,T, (3.3)

be the LS residuals of the long autoregression (3.1), and setΣ̃u(nT) = T−1 ∑T
t=1 ũt (nT) ũt (nT)′. Then,

under Assumptions3.1to 3.3, and (3.2), Dufour and Jouini (2010) showed that
(

T1/2/nT
)∥

∥ũt (nT)−
ut

∥

∥ is stochastically bounded, uniformly int = 1, ...,T, that is

∥

∥ũt (nT)−ut
∥

∥ = Op
(

nT/T1/2), uniformly in t = 1, ...,T. (3.4)

Then
∥

∥Σ̃u(nT)−Σu
∥

∥,
∥

∥Σ̃−1
u(nT)−Σ−1

u

∥

∥ = Op
(

nT/T1/2). (3.5)

The asymptotic equivalence stated above suggests that we may be able to estimate consistently
the VARMA parameters in (2.8) by replacing the unobserved innovations inXt with their respective
first-stage estimates. Thus, modulo some manipulations, (2.8) can equivalentlybe rewritten as

yt =
[

X̃t (nT)′⊗ Ik
]

Rη +et (nT) , (3.6)
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whereX̃t (nT) =
[

1, ṽt (nT)′ ,y′t−1, . . . , y′t−p̄, ũt−1(nT)′ , . . . , ũt−p̄(nT)′
]′

, ṽt (nT) = yt − ũt (nT) and

et (nT) = ũt (nT)+
p̄

∑
j=0

Θ j
[

ut− j − ũt− j (nT)
]

. (3.7)

Noting that
∥

∥et (nT)− ũt (nT)
∥

∥ = Op
(

nT/T1/2
)

, in view of (3.7) and (3.4), an explicit two-step
(feasible) GLS estimator ofη is simply

η̃ = argmin
η

T

∑
t=1

et (nT)′ Σ̃−1
u(nT)et (nT) = Q̃X(nT)W̃X(nT) , (3.8)

where Q̃X(nT) =
{

R′[Γ̃X(nT) ⊗ Σ̃−1
u(nT)

]

R
}−1

and W̃X(nT) = T−1 ∑T
t=1R′[X̃t (nT) ⊗ Σ̃−1

u(nT)

]

yt , with

Γ̃X(nT) = T−1 ∑T
t=1 X̃t (nT) X̃t (nT)′. In addition, letQX =

{

R′[ΓX ⊗ Σ−1
u

]

R
}−1

. Then under suit-

able conditions, Assumptions3.1 to 3.4, and (3.2), Dufour and Jouini (2010) have shown that

‖η̃ −η‖ = Op
(

T−1/2) (3.9)

and
T1/2(η̃ −η

) d−→
T→∞

N
[

0, QX
]

. (3.10)

Further, they suggested̃QX(nT) as a consistent estimator ofQX.

Now, let Σ̃e(nT) = (T − p̄)−1 ∑T
t=p̄+1 ẽt (nT) ẽt (nT)′, where

ẽt (nT) = yt −
[

X̃t (nT)′⊗ Ik
]

Rη̃ , t = p̄+1, . . . ,T. (3.11)

Then, using (2.8), (3.4), (3.9) and (3.11), Dufour and Jouini (2010) showed that

∥

∥ẽt (nT)−ut
∥

∥ = Op
(

nT/T1/2), uniformly in t = p̄+1, . . . ,T. (3.12)

Hence
∥

∥Σ̃e(nT)−Σu
∥

∥,
∥

∥Σ̃−1
e(nT)−Σ−1

u

∥

∥ = Op
(

nT/T1/2). (3.13)

4. Asymptotic efficiency

The two-step linear estimator described above is not efficient. To allow for efficiency, a further
linear regression is needed. As will be shown below, the latter is achieved by exploiting the nonlin-
ear structure of the VARMA innovations in the model parameters. Unlike Hannan and Kavalieris
(1984)’s procedure which is heavy to implement, even in small systems, and whose fourth-stage
(efficient) estimator does not explicitly show the echelon-form restrictions,we yield a simple and
compact efficient estimator with a simple estimator of its covariance matrix. However, a brief de-
scription of its competitors is required.
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4.1. Competing procedures

Using our setup, we stress that running OLS on (3.6) corresponds to thethird-stage and the second-
stage estimation procedures of Hannan and Kavalieris (1984) and Reinsel et al. (1992), respectively.
Denote byη̃ the resulting estimators and letµ̃Φ , Φ̃i andΘ̃ j be the implied two-step OLS estimates
of µΦ , Φi andΘ j , respectively. Further, designate by ˜ut the implied “implicit” VARMA innovation
estimates or residuals such that

Φ̃ (L)yt = µ̃Φ +Θ̃ (L) ũt , (4.1)

whereΦ̃ (L) = Φ̃0−∑p̄
i=1 Φ̃iLi andΘ̃ (L) = ∑p̄

j=0Θ̃ jL j , with Φ̃0 = Θ̃0. Solving forũt , one gets

ũt =
∞

∑
τ=0

Λτ (η̃)
[

Φ̃0yt−τ −
p̄

∑
i=1

Φ̃iyt−i−τ − µ̃Φ

]

, (4.2)

where∑∞
τ=0Λτ (η̃)Lτ = Θ̃ (L)−1. As suggested in the literature [see Hannan and Kavalieris (1984)

and Reinsel et al. (1992)], these implicit residuals, ˜ut , are approximated (or filtered) with

ε t (η̃) =
t+nT−1

∑
τ=0

Λτ (η̃)
[

Φ̃0yt−τ −
p̄

∑
i=1

Φ̃iyt−i−τ − µ̃Φ

]

, t = −nT +1, . . . ,T. (4.3)

Hannan-Kavalieris (HK) procedure:

Let Vt (η̃) =
[

1,y′t − ε t (η̃)′ ,y′t−1, . . . , y′t−p̄,ε t−1(η̃)′ , . . . , ε t−p̄(η̃)′
]′

be the regressor vector based

on the two-step OLS residualsε t (η̃) defined above. Also, setWt (η̃) = ∑t+nT−1
τ=0 R′[Vt−τ (η̃)⊗

Λτ (η̃)′
]

. Then, the efficient estimator of Hannan and Kavalieris (1984) forη is

η̂KH = η̃ +
{ T

∑
t=−nT+1

Wt (η̃) Σ̃−1
e(nT)Wt (η̃)′

}−1 T

∑
t=−nT+1

Wt (η̃) Σ̃−1
e(nT)ε t (η̃) (4.4)

whereη̃ andΣ̃e(nT) are the respective OLS estimators ofη andΣu obtained from model (3.6). These

authors have then proposed̃Σρ(η̃ ,η̂HK) = (nT +T − p̄)−1 ∑T
t=−nT+1+p̄ ρ t (η̃ , η̂HK)ρ t (η̃ , η̂HK)′,

whereρ t (η̃ , η̂HK) = ε t (η̃)−Wt (η̃)′ (η̂HK − η̃), as the fourth-stage estimator ofΣu.

Reinsel-Basu-Yap (RBY) procedure:

Manipulating (2.1), the GLS estimator of Reinsel et al. (1992) obtains from the linear regression:

yt (η̃) =
[

Vt (η̃)′⊗ Ik
]

Rη +
p̄

∑
j=0

Θ̃ jut− j +Dt (η̃ ,η) , t = −nT +1, . . . ,T, (4.5)

where yt (η̃) = yt − ε t (η̃) + ∑p̄
j=0Θ̃ jε t− j (η̃) and Dt (η̃ ,η) = ∑p̄

j=0

(

Θ̃ j −Θ j
)[

ε t− j (η̃)− ut− j
]

.
Dropping the compound termDt (η̃ ,η) – considered as being negligible – from model (4.5), then
settingy(η̃) =

[

y−nT+1(η̃)′ , . . . , yT (η̃)′
]′

, V (η̃) =
[

V−nT+1(η̃) , . . . , VT (η̃)
]

andΘ̃ = ∑p̄
j=0

[

L j ⊗
Θ̃ j

]

, whereL j stands for a(nT +T)×(nT +T) lag matrix which has ones on thej th diagonal below
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the main diagonal and zeros elsewhere (L0 reduces to the identity matrix), we get the stacked form
model

y(η̃) =
[

V (η̃)′⊗ Ik
]

Rη +Θ̃u, (4.6)

whereu =
[

u′−nT+1, . . . , u′T
]′

, with Θ̃u having a covariance matrix estimatorΞ̃ε(η̃) = Θ̃
[

InT+T ⊗
Σ̃ε(η̃)

]

Θ̃ ′, whereΣ̃ε(η̃) = (nT +T)−1 ∑T
t=−nT+1 ε t (η̃)ε t (η̃)′ andΘ̃ is ak(nT +T)×k(nT +T) ma-

trix based on the two-step OLS estimates. Therefore, the GLS estimator of Reinsel et al. (1992)
is

η̂RBY =
{

R′[V (η̃)⊗ Ik
]

Ξ̃−1
ε(η̃)

[

V (η̃)′⊗ Ik
]

R
}−1

R′[V (η̃)⊗ Ik
]

Ξ̃−1
ε(η̃)y(η̃) , (4.7)

thus requiring the burdensome task, even in small samples, of inverting thek(nT +T)×k(nT +T)
high-dimensional matrixΞ̃ε(η̃). An improved version of this estimator is obtained by deleting
the firstkp̄ components ofy(η̃) and p̄ columns ofV (η̃) and only retaining thek(nT +T − p̄)×
k(nT +T − p̄) lower right corner block matrix of̃Ξε(η̃), but it still requires the systematic inversion
of a large matrix.

Poskitt-Salau (PS) procedure:

The second-stage estimation procedure of Poskitt and Salau (1995) consists in running LS on a
variant of (3.6), precisely

ṽt (nT) =
[

X̃t (nT)′⊗ Ik
]

Rη +ζ t , (4.8)

whereζ t = ∑p̄
j=0Θ jξ t− j , with ξ t = ut − ũt (nT). Further, set ˜v(nT) =

[

ṽ1(nT)′ , . . . , ṽT (nT)′
]′

,

X̃ (nT) =
[

X̃1(nT) , . . . , X̃T (nT)
]

andζ =
[

ζ 1
′, . . . , ζ ′

T

]′
, whereζ = Θξ andξ =

[

ξ 1
′, . . . , ξ T

′]′.
Then, the efficient GLS estimator of Poskitt and Salau (1995) is

η̂PS=
{

R′[X̃ (nT)⊗ Ik
]

Ξ̃−1
u(nT)

[

X̃ (nT)′⊗ Ik
]

R
}−1

R′[X̃ (nT)⊗ Ik
]

Ξ̃−1
u(nT)ṽ(nT) , (4.9)

where, again, one has to invert akT×kT high-dimensional matrix̃Ξu(nT) = Θ̃
[

IT ⊗ Σ̃u(nT)

]

Θ̃ ′ (es-
timating the covariance matrix ofζ ), with Θ̃ now corresponding to the OLS moving-average pa-
rameter estimates from model (4.8). An improved version ofη̂PS is obtained in a similar way to
η̂RBY.

4.2. Our procedure

Having shown how our setup is practical and flexible to adapt to alternativeprocedure, we now
derive our efficient linear estimator. In view of (3.7), the two-step feasible GLS (eventually two-
step OLS) residuals (3.11) are such that

ẽt (nT) = ũt (nT)+
p̄

∑
j=0

Θ̃ j
[

ũt− j − ũt− j (nT)
]

, (4.10)

where, similarly, ˜ut are the implicit VARMA residuals or estimates ofut matching the two-step
GLS (eventually OLS) estimator̃η since (4.10) can be expressed as (4.1). Indeed, because the error
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termset (nT) in (3.7) are functions of the actual innovationsut , it follows that by estimatinget (nT)
one implicitly and simultaneously estimatesut . More importantly, (4.10) reveals that these implicit
estimates ˜ut are endogenous functions not only of the two-step GLS moving average coefficient
estimatesΘ̃ j and the resulting residuals ˜et (nT) as well, but also of the first-stage OLS autoregressive
residuals ˜ut (nT). Hence, using the fact that̃Θ (L)−1 = ∑∞

τ=0Λτ (η̃)Lτ , one sees that

ũt = ũt (nT)+
∞

∑
τ=0

Λτ (η̃)
[

ẽt−τ (nT)− ũt−τ (nT)
]

. (4.11)

This paper proposes a new recursive filtering scheme for approximatingthese implicit residuals
with

ut (η̃) = ũt (nT)+
t−1

∑
τ=0

Λτ (η̃)
[

ẽt−τ (nT)− ũt−τ (nT)
]

, t = 1, . . . ,T, (4.12)

initiating with ẽt (nT) = ũt (nT) [henceut (η̃) = ũt (nT)] for 1 ≤ t ≤ p̄. Precisely, our scheme de-
scribes the pointwise adjustment mechanism through which the approximate (orfiltered) implicit
VARMA residualsut (η̃) are recursively computed around ˜ut (nT).

Corollary 4.1 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Let alsoũt be the implicit VARMA
innovation estimates matching the two-step estimatorη̃ , as equivalently defined in(4.2) or (4.11)
but respectively approximated with(4.3) and(4.12). Then, under Assumptions3.1–3.4,

∥

∥ũt − ε t (η̃)
∥

∥ = Op
(

ρ t+nT
)

and
∥

∥ũt −ut (η̃)
∥

∥ = Op

(

ρ t nT

T1/2

)

. (4.13)

Obviously, the recursive schemes (4.3) and (4.12) yield approximations with different (point-
wise) convergence speeds towards the implicit VARMA residuals ˜ut , regardless of the persistence
degree of the process and the estimation method (OLS or GLS) used for obtaining the two-step
VARMA parameter estimates. However, while noting that we loosenT observations with our re-
cursive scheme, we stress that this is compensated with the use of better initialvalues, namely the
first-stage autoregressive residuals that we know are consistent; see(3.4). Of course, the recursive
schemes above are asymptotically equivalent only when the Kronecker indices are all equal, namely
when GLS reduces to OLS.

Similarly, it is worth emphasizing that the VARMA innovationut can be expressed from (3.7)
as

ut = ũt (nT)+
∞

∑
τ=0

Λτ (η)
[

et−τ (nT)− ũt−τ (nT)
]

, (4.14)

and then be approximated with

ut (η) = ũt (nT)+
t−1

∑
τ=0

Λτ (η)
[

et−τ (nT)− ũt−τ (nT)
]

, t = 1, . . . ,T. (4.15)

Hence,‖ut −ut (η)‖ = Op
(

ρ tnT/T1/2
)

, in view of (3.4). Also, letΣ̃u(η̃) = T−1 ∑T
t=1ut (η̃)ut (η̃)′.
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Then its rate of convergence toΣu follows.

Proposition 4.1 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with
the VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions
3.1–3.4,

∥

∥Σ̃u(η̃)−Σu
∥

∥,
∥

∥Σ̃−1
u(η̃)−Σ−1

u

∥

∥ = Op
(

T−1/2). (4.16)

Now, let Xt (η̃) =
[

1,vt (η̃)′ ,y′t−1, . . . , y′t−p̄,ut−1(η̃)′ , . . . , ut−p̄(η̃)′
]′

with vt (η̃) = yt −ut (η̃).
Further, setZ◦

t (η̃ ,η) = ∑t−1
τ=0R′[Xt−τ (η̃)⊗Λτ (η)′

]

. Then manipulating (4.15) and (4.12), one gets

ut (η̃)−ut (η) = −Z◦
t (η̃ ,η)′

(

η̃ −η
)

. (4.17)

The latter expression can further be rearranged to obtain the linear regression model

ω t (η̃) = Zt (η̃)′ η + ε t (η̃ ,η) , (4.18)

where

ω t (η̃) = ut (η̃)+Zt (η̃)′ η̃ and ε t (η̃ ,η) = ut (η)+
[

Zt (η̃)−Z◦
t (η̃ ,η)

]′(η̃ −η
)

, (4.19)

with Zt (η̃) = ∑t−1
τ=0R′[Xt−τ (η̃)⊗Λτ (η̃)′

]

. Note that (4.17) is an identity obtained by exploiting
the nonlinear structure of the VARMA innovations in the model parameters. Soit does not stand for
a Taylor expansion. More importantly, the complex dynamic structure of the error termsε t (η̃ ,η)
driving the process (4.18) – missed by Hannan and Kavalieris (1984) in their fourth stage – is com-
pletely specified up to the unknown parameter vectorη ; see (4.19). Hence, once estimated, these
errors provide a closed form solution for computing accurately the approximate implicit VARMA
residuals or innovation estimates matching the three-step efficient linear estimator that we shall
define below. Such a result has not been established yet in the literature.

In view of (4.17) and (4.19) [or (4.18) and (4.19)], one sees, by Lemma2.2of Kreiss and Franke
(1992) and (3.9), that

∥

∥ε t (η̃ ,η)− ut (η̃)
∥

∥ = Op
(

T−1/2
)

, which suggests obtaining a third-stage
GLS (fully efficient) linear estimator ofη , sayη̂ , such that

η̂ = argmin
η

T

∑
t=1

ε t (η̃ ,η)′ Σ̃−1
u(η̃)ε t (η̃ ,η) = Q̃X(η̃)W̃X (η̃), (4.20)

whereQ̃X(η̃) =
{

T−1 ∑T
t=1Zt (η̃) Σ̃−1

u(η̃)Zt (η̃)′
}−1

andW̃X(η̃) = T−1 ∑T
t=1Zt (η̃) Σ̃−1

u(η̃)ω t (η̃). Fur-

ther, letΩ̃X(η̃) = T−1 ∑T
t=1Zt (η̃) Σ̃−1

u(η̃)ut (η̃). Then, in view ofω t (η̃) [see (4.19)],

η̂ = η̃ + Q̃X(η̃)Ω̃X(η̃). (4.21)

Clearly, our third-stage GLS estimators are different from their competitorssince alternative
regressors and weighting matrix are used in their computation. Precisely, weexploit the explicit
form of the second-stage regression residuals to derive a new recursive filtering scheme for approx-
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imating the implicit VARMA residuals matching the two-step estimator [see (4.12)]. These well
behaved approximate residuals stand for ”new regressors” which, unlike predecessors [see (4.3)],
depend on consistent (better) initial values, and explicitly take into accountthe truncation error of
the first-stage autoregression along with some adjustments with respect to the second-stage regres-
sion residuals. Finally, it is noteworthy thatη̂ is asymptotically equivalent to ML under Gaussian
errors since∂ut(η)

∂η ′ |η=η̃ = −Zt (η̃)′ [see (4.17)], and that it corresponds to an iteration of the scoring
algorithm starting from̃η , in view of (4.21).

Another feature characterizing the computation of our fully efficient estimators, compared to
those of Hannan and Kavalieris (1984) and Poskitt and Salau (1995), with the exception of Reinsel
et al. (1992), consists in using a weighting matrix exhibiting faster rate of convergence, hence better
sample properties; see (3.13) and (3.5) versus Propositions4.1. However, we stress that, although
Reinsel et al. (1992) procedure’s relies on a refined weighting matrix, itstill uses filtered residuals
from an alternative scheme.

Now, letQ̃◦
X(η̃) =

{

T−1 ∑T
t=1Z◦

t (η̃ ,η) Σ̃−1
u(η̃)Z

◦
t (η̃ ,η)′

}−1
andQX(η) =

{

E
[

ZtΣ−1
u Zt

′]
}−1

, with

Zt = ∑∞
τ=0R′[Xt−τ ⊗Λτ (η)′

]

. Also, denote by‖A‖2
1 the largest eigenvalue ofA′A, for any matrixA.

Proposition 4.2 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with
the VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions
3.1–3.4,

∥

∥Q̃◦
X(η̃)−QX(η)

∥

∥

1,
∥

∥Q̃X(η̃)− Q̃◦
X(η̃)

∥

∥

1 = Op
(

T−1/2). (4.22)

The next theorems establish the convergence and the asymptotic normality of our efficient esti-
mator.

Theorem 4.1 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions3.1–3.4,

‖η̂ −η‖ = Op
(

T−1/2). (4.23)

Theorem 4.2 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions3.1–3.4,

T1/2(η̂ −η
) d−→

T→∞
N

[

0,QX(η)

]

. (4.24)

A consistent estimator of its asymptotic covariance matrix is then
{

∑T
t=1Zt (η̃) Σ̃−1

u(η̃)Zt (η̃)′
}−1

.

As mentioned above with respect to (4.19), we suggest better filtering accurately, from the third-
stage regression residualsε t (η̃ , η̂), well-behaved VARMA innovation estimates in finite samples,
sayut (η̂), such that:

ε t (η̃ , η̂) = ut (η̂)+
[

Zt (η̃)−Z◦
t (η̃ , η̂)

]′(η̃ − η̂
)

, t = p̄+1, . . . ,T, (4.25)

where ε t (η̃ , η̂) = ω t (η̃) − Zt (η̃)′ η̂ and Z◦
t (η̃ , η̂) = ∑t−1

τ=0R′[Xt−τ (η̃) ⊗Λτ (η̂)′
]

. Finally, let
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Σ̃u(η̂) = (T − p̄)−1 ∑T
t=p̄+1ut (η̂)ut (η̂)′ be the resulting third-stage efficient estimator of the

VARMA innovation covariance matrixΣu. Then its rate of convergence follows.

Proposition 4.3 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with
the VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions
3.1–3.4,

∥

∥Σ̃u(η̂)−Σu
∥

∥ = Op
(

T−1/2) . (4.26)

To roughly show to which extent̃Σρ(η̃ ,η̂HK) is less accurate thañΣu(η̂) in estimatingΣu in finite
samples, assume for simplicity that the HK procedure usesut (η̃) and Σ̃u(η̃) instead ofε t (η̃) and
Σ̃e(nT). Therefore,Wt (η̃) = Zt (η̃), η̂HK = η̂ and thenρ t (η̃ , η̂HK) = ε t (η̃ , η̂). Hence, in view of
(4.25), our well-behaved error covariance estimator suggested aboveis of orderT−1 more accu-
rate than the one by the fourth-stage of Hannan and Kavalieris (1984) in estimating the VARMA
innovation covariance matrixΣu, since

∥

∥ρ t (η̃ , η̂HK)−ut
∥

∥ =
∥

∥ut (η̂)−ut
∥

∥+Op
(

T−1), t = p̄+1, . . . ,T. (4.27)

5. Simulation study

The small-sample performance of our proposed estimators is studied with MonteCarlo (MC) sim-
ulations. We only focus on the fully efficient estimates since they stand for themajor contribution
of the paper. Specifically, we consider a comparative study involving those suggested by Hannan
and Kavalieris (1984) (HK), Reinsel et al. (1992) (RBY) and Poskitt and Salau (1995) (PS), respec-
tively. In these simulations, the improved versions of the last two estimators described above were
used. In addition, two versions of our proposed three-step estimator, say TS1 and TS2, were con-
sidered. The first one relies on the two-step GLS estimator given in (3.8), while the second is based
on the two-step OLS estimator studied in Dufour and Jouini (2005). Obviously TS1 and TS2 are
identical when the Kronecker indices characterizing the echelon canonical form are all equal. While
noting that a two step OLS estimation has been used for obtaining the GLS estimators of Hannan
and Kavalieris (1984) and Reinsel et al. (1992), those of Poskitt and Salau (1995) were obtained by
implementing their three-step procedure in full. Of course, all competing (fullyefficient) estima-
tors are asymptotically equivalent to ML estimators since they roughly correspond to one iteration
of the Gauss-Newton algorithm, starting from a

√
T-consistent estimator. Finally, ML estimation

was omitted in the simulations for the following reasons. First, its finite sample properties have
been extensively studied in the literature and were found more or less satisfactory given the model
at hand. Second, besides the fact that state-space formulation based ML estimation of VARMA
models still requires potentially high evaluations of the EM algorithm, more especially in big or
persistent systems, it also fails to handle the parsimonious echelon form parameterization since it is
not guaranteed that the resulting estimated echelon VARMA models are stationary and invertible.
Third, in big systems, nonlinear estimation procedures cannot compete with linear methods from the
computational cost viewpoint, especially for simulation-based inference using bootstrap methods or
maximized Monte Carlo (MMC) tests [see Dufour (2006) and Dufour and Jouini (2006)]. Finally,

12



as the paper deals with efficient linear estimation methods for VARMA models, we only studied the
finite-sample performance of the main procedures compared to the ones we suggested.

We simulate two bivariate stationary invertible Gaussian ARMA processes with drifts and re-
spective Kronecker indices(1,2) and(2,1), using sample sizes 100 and 200. Simulation results on
the bias (in absolute value) and MSE of the estimates for each procedure are given in Tables 1–4.
These tables also show the MSE ratios of the alternative fully efficient estimators with respect to
TS1. These results are based on 1000 replications using GAUSS randomnumber generator. To
avoid numerical problems due to initialization, extra first 100 pseudo-data were generated then dis-
carded. Trials associated with estimates implying noninvertible VARMA processes are thrown then
replaced. In all simulations, the rate of replacement did not exceed 5% in theworst case. The two-
step echelon parameter estimates were obtained from models using, as regressors, autoregressive
residuals associated with autoregression truncation set to the integer partof lnT thenT−1/2, since
it has been recommended in the literature to choose the truncation order between these two values.
This strategy has been considered to draw the effect of the first-stage autoregression lag-order choice
on the finite sample properties of the echelon parameter estimates. The error covariance matrix with
σ11 = .49,σ22 = .29 andσ12 = σ21 =−.14, is used for both simulated models. The parameter val-
ues of the simulated echelon VARMA models as well as the resulting eigenvalues(describing the
persistence degree of the model) are given in the tables. For a better comparison with HK and RBY
procedures, the latter are finally computed after discarding the firstnT values of the residualsε t (η̃)
[namely,ε−nT+1(η̃),..., ε0(η̃); see (4.3)] to avoid, though partially, problems due to initialization
since preliminary simulations (that we omitted) showed poor HK estimates.

For both models, simulation evidence shows that, unlike TS1, TS2 and RBY methods whose
respective estimates show small to moderate bias, HK and PS procedures yield estimates with sub-
stantial bias associated with relatively significant MSE forT = 100 [see upper panels of Tables
1 and 3]. These biases decrease with the sample size [see Tables 1–4]. It is suspected that the
bias associated with PS procedure is due to the weighting matrix used in the computation of the
estimates. Poskitt and Salau (1995) argued that the error term in their linearregression follows a
moving-average process of order ¯p, namelyζ t = ∑p̄

j=0Θ jξ t− j with T−1 ∑T
t=1 ξ tξ

′
t = Op

(

nT/T
)

Σu

[see Hannan and Kavalieris (1986) and Poskitt and Salau (1995)], but instead, they used̃Σu(nT)

which we know isOp
(

1
)

Σu. The bias associated with HK procedure may be attributed to using
more or less well behaved filtered residuals in finite samples, and a weighting matrix mismatching
the one iteration of the scoring algorithm (starting from the two-step OLS estimates). In fact, they
use the third-stage error covariance estimator of their procedure insteadof the one associated with a
faster rate of convergence, namely the one based on the filtered residuals necessary to their fourth-
stage estimation. Although RBY procedure uses the same filtering scheme as theHK method, it
relatively delivers estimates with satisfactory finite sample properties. This is due perhaps to using
an error covariance estimator with better small-sample properties as a weightingmatrix in their GLS
linear regression.

It is well known that approximating VARMA models having highly persistent MAoperators
usually requires autoregressions with many lags, and vice versa. Also, approximating nonpersistent
VARMA models with autoregressions using many lags would result in estimates withhigher bias
and/or MSE. This exactly occurs with TS1 and TS2 procedures for the echelon VARMA model with
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Sample SizeT = 100
nT Coefficient Value Bias MSE MSE Ratio

TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS
4 µΦ ,1 .000 .009 .010 .001 .011 .009 .200 .200 .257 .204 .190 1.000 1.286 1.020 .952

µΦ ,2 .000 .003 .004 .001 .004 .000 .145 .146 .179 .151 .123 1.006 1.231 1.039 .845
φ11,1 1.200 .020 .020 .005 .018 .008 .056 .057 .079 .057 .051 1.001 1.390 1.012 .896
φ12,1 .240 .000 .000 .003 .001 .009 .046 .046 .062 .047 .044 1.001 1.361 1.018 .969
φ22,1 .400 .005 .000 .015 .000 .135 .111 .106 .134 .115 .181 .956 1.205 1.033 1.622
φ21,2 -.900 .005 .008 .013 .006 .089 .078 .074 .094 .077 .121 .950 1.212 .987 1.558
φ22,2 -.270 .002 .000 .005 .002 .048 .068 .068 .086 .073 .083 1.000 1.270 1.082 1.224
θ 11,1 .800 .015 .014 .025 .013 .210 .096 .097 .111 .097 .219 1.004 1.153 1.013 2.274
θ 21,1 .500 .007 .004 .025 .002 .081 .090 .089 .102 .095 .115 .994 1.136 1.060 1.274
θ 12,1 .400 .018 .017 .104 .024 .213 .117 .118 .185 .126 .239 1.006 1.583 1.081 2.043
θ 22,1 .400 .037 .030 .059 .033 .168 .135 .127 .160 .148 .220 .941 1.185 1.102 1.630
θ 21,2 .340 .035 .028 .004 .030 .334 .165 .154 .164 .166 .376 .935 .993 1.004 2.274
θ 22,2 .850 .073 .067 .204 .078 .406 .159 .153 .261 .159 .418 .960 1.639 .997 2.626

10 µΦ ,1 .000 .002 .003 .002 .002 .002 .206 .208 .266 .211 .199 1.009 1.291 1.025 .969
µΦ ,2 .000 .005 .005 .002 .004 .003 .169 .168 .210 .169 .155 .994 1.240 1.003 .919
φ11,1 1.200 .024 .025 .024 .023 .022 .062 .062 .079 .064 .060 1.009 1.284 1.038 .971
φ12,1 .240 .000 .000 .003 .000 .000 .046 .047 .073 .050 .046 1.007 1.564 1.068 .988
φ22,1 .400 .006 .003 .003 .003 .020 .105 .102 .110 .111 .107 .968 1.046 1.056 1.018
φ21,2 -.900 .014 .012 .005 .007 .003 .081 .078 .088 .079 .078 .960 1.082 .983 .970
φ22,2 -.270 .003 .002 .001 .000 .007 .064 .064 .075 .070 .064 .996 1.174 1.090 .990
θ 11,1 .800 .012 .009 .024 .000 .053 .100 .100 .102 .103 .106 1.006 1.020 1.031 1.062
θ 21,1 .500 .000 .001 .005 .006 .009 .090 .090 .096 .095 .094 .999 1.066 1.051 1.036
θ 12,1 .400 .011 .009 .025 .003 .040 .122 .124 .161 .135 .133 1.019 1.321 1.109 1.092
θ 22,1 .400 .028 .028 .032 .026 .056 .126 .122 .127 .132 .127 .974 1.006 1.047 1.007
θ 21,2 .340 .019 .022 .039 .026 .066 .160 .156 .161 .172 .189 .974 1.004 1.077 1.185
θ 22,2 .850 .050 .051 .076 .033 .090 .147 .148 .154 .153 .156 1.005 1.043 1.037 1.054

Note – TS1 and TS2 are the three-step GLS estimators based on the two-stepGLS estimator and the two-step OLS estimator, respectively. While HK, RBY and
PS stand for the fully efficient GLS estimators suggested by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995),respectively. These
estimates are obtained with 1000 replications. The eigenvalues of the modelare real .900, .400 and .300 for the autoregressive (AR) operator, and real .824 and
conjugate -.188̄+.790i (.813 in norm) for the moving-average (MA) operator. Recall that the number of eigenvalues in each of the AR and MA operators is equal
to the McMillan degree.
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Sample SizeT = 200
nT Coefficient Value Bias MSE MSE Ratio

TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS
5 µΦ ,1 .000 .001 .001 .003 .001 .000 .114 .114 .177 .116 .110 1.001 1.547 1.016 .961

µΦ ,2 .000 .000 .000 .000 .000 .000 .094 .094 .119 .093 .094 1.003 1.268 .996 1.006
φ11,1 1.200 .012 .012 .004 .010 .011 .038 .038 .046 .038 .037 .999 1.208 1.016 .972
φ12,1 .240 .001 .001 .013 .000 .002 .030 .030 .046 .032 .030 .999 1.488 1.048 .991
φ22,1 .400 .000 .002 .011 .004 .012 .062 .060 .073 .065 .076 .968 1.189 1.056 1.232
φ21,2 -.900 .005 .006 .003 .001 .003 .044 .044 .053 .046 .051 .982 1.196 1.029 1.157
φ22,2 -.270 .000 .001 .003 .001 .015 .040 .039 .045 .041 .046 .984 1.148 1.038 1.164
θ 11,1 .800 .002 .000 .035 .002 .111 .060 .061 .078 .064 .123 1.018 1.301 1.058 2.038
θ 21,1 .500 .000 .000 .005 .005 .028 .058 .058 .064 .062 .065 .999 1.085 1.063 1.117
θ 12,1 .400 .005 .003 .081 .009 .093 .075 .076 .134 .085 .130 1.007 1.781 1.132 1.720
θ 22,1 .400 .011 .008 .029 .011 .023 .073 .070 .080 .081 .080 .961 1.103 1.095 1.101
θ 21,2 .340 .008 .005 .041 .016 .063 .097 .094 .118 .104 .136 .966 1.212 1.068 1.391
θ 22,2 .850 .030 .028 .118 .031 .206 .087 .087 .157 .094 .218 .993 1.794 1.074 2.490

14 µΦ ,1 .000 .004 .004 .004 .003 .004 .115 .116 .170 .120 .112 1.006 1.472 1.037 .969
µΦ ,2 .000 .005 .005 .005 .004 .004 .093 .094 .115 .097 .090 1.000 1.232 1.036 .968
φ11,1 1.200 .011 .011 .012 .011 .010 .038 .039 .052 .040 .038 1.006 1.351 1.038 .985
φ12,1 .240 .000 .000 .001 .000 .000 .031 .031 .045 .033 .032 1.001 1.433 1.057 1.012
φ22,1 .400 .000 .000 .000 .001 .013 .062 .060 .063 .063 .067 .975 1.017 1.020 1.081
φ21,2 -.900 .005 .005 .005 .004 .002 .047 .046 .048 .048 .049 .985 1.028 1.025 1.035
φ22,2 -.270 .000 .000 .001 .000 .005 .039 .039 .043 .041 .040 .985 1.085 1.029 1.014
θ 11,1 .800 .001 .004 .000 .011 .019 .063 .064 .064 .067 .061 1.015 1.017 1.062 .972
θ 21,1 .500 .001 .001 .002 .002 .005 .060 .059 .064 .062 .063 .997 1.077 1.035 1.056
θ 12,1 .400 .000 .002 .002 .008 .017 .079 .079 .086 .083 .083 1.004 1.096 1.054 1.058
θ 22,1 .400 .010 .008 .010 .006 .020 .072 .071 .074 .072 .071 .981 1.032 1.003 .991
θ 21,2 .340 .009 .008 .010 .005 .030 .096 .094 .097 .100 .109 .982 1.016 1.042 1.138
θ 22,2 .850 .021 .020 .027 .009 .038 .088 .087 .086 .089 .089 .984 .981 1.011 1.008

Note – TS1 and TS2 are the three-step GLS estimators based on the two-stepGLS estimator and the two-step OLS estimator, respectively. While HK, RBY and
PS stand for the fully efficient GLS estimators suggested by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995),respectively. These
estimates are obtained with 1000 replications. The eigenvalues of the modelare real .900, .400 and .300 for the autoregressive (AR) operator, and real .824 and
conjugate -.188̄+.790i (.813 in norm) for the moving-average (MA) operator. Recall that the number of eigenvalues in each of the AR and MA operators is equal
to the McMillan degree.
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Sample SizeT = 100
nT Coefficient Value Bias MSE MSE Ratio

TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS
4 µΦ ,1 .000 .001 .001 .001 .000 .001 .158 .159 .237 .166 .164 1.007 1.503 1.053 1.040

µΦ ,2 .000 .004 .004 .006 .005 .001 .188 .189 .199 .190 .180 1.006 1.059 1.015 .958
φ21,0 .500 .003 .004 .005 .005 .003 .033 .033 .062 .036 .033 1.020 1.873 1.093 1.004
φ11,1 1.800 .002 .001 .030 .000 .010 .034 .034 .063 .039 .034 1.009 1.817 1.134 1.001
φ21,1 -.400 .037 .041 .016 .045 .038 .096 .100 .179 .112 .095 1.033 1.852 1.155 .982
φ22,1 .800 .064 .069 .038 .075 .067 .144 .149 .252 .166 .142 1.029 1.746 1.148 .982
φ11,2 -.360 .005 .007 .157 .011 .053 .111 .112 .246 .130 .116 1.007 2.212 1.169 1.042
φ12,2 -.900 .012 .015 .251 .021 .083 .169 .169 .382 .196 .176 1.002 2.261 1.163 1.042
θ 11,1 .330 .055 .055 .024 .043 .118 .130 .131 .214 .143 .160 1.012 1.651 1.105 1.237
θ 21,1 -.180 .016 .016 .085 .000 .087 .108 .109 .209 .128 .132 1.008 1.924 1.179 1.213
θ 12,1 -.200 .021 .022 .066 .014 .111 .141 .144 .183 .154 .169 1.019 1.297 1.090 1.201
θ 22,1 -.400 .072 .080 .126 .071 .188 .176 .184 .336 .202 .233 1.043 1.905 1.146 1.320
θ 11,2 -.200 .061 .064 .098 .055 .070 .138 .140 .255 .158 .129 1.014 1.849 1.145 .940
θ 12,2 .920 .024 .032 .334 .015 .191 .205 .210 .473 .243 .253 1.027 2.307 1.185 1.234

10 µΦ ,1 .000 .000 .000 .005 .000 .001 .173 .173 .198 .175 .183 1.002 1.143 1.011 1.060
µΦ ,2 .000 .000 .000 .002 .000 .001 .208 .208 .217 .209 .208 .999 1.042 1.004 1.001
φ21,0 .500 .000 .001 .000 .001 .006 .040 .040 .048 .041 .041 1.005 1.190 1.011 1.029
φ11,1 1.800 .001 .002 .000 .005 .005 .038 .040 .046 .044 .039 1.040 1.197 1.139 1.028
φ21,1 -.400 .043 .047 .039 .047 .030 .116 .118 .142 .121 .112 1.018 1.220 1.040 .966
φ22,1 .800 .081 .086 .076 .085 .069 .172 .175 .208 .179 .169 1.017 1.208 1.043 .984
φ11,2 -.360 .022 .020 .034 .011 .056 .115 .119 .145 .128 .127 1.031 1.259 1.112 1.103
φ12,2 -.900 .046 .043 .066 .031 .098 .173 .176 .218 .187 .195 1.021 1.260 1.082 1.126
θ 11,1 .330 .061 .061 .051 .052 .075 .139 .141 .181 .146 .151 1.015 1.302 1.049 1.084
θ 21,1 -.180 .013 .013 .003 .007 .000 .123 .123 .162 .133 .123 .993 1.313 1.076 .994
θ 12,1 -.200 .031 .030 .032 .025 .045 .148 .152 .168 .157 .158 1.025 1.132 1.062 1.064
θ 22,1 -.400 .095 .100 .097 .086 .089 .213 .219 .258 .224 .213 1.024 1.208 1.049 .997
θ 11,2 -.200 .062 .063 .040 .068 .034 .143 .148 .187 .158 .132 1.035 1.311 1.103 .926
θ 12,2 .920 .071 .073 .107 .043 .122 .226 .239 .265 .248 .237 1.058 1.170 1.095 1.048

Note – TS1 and TS2 are the three-step GLS estimators based on the two-stepGLS estimator and the two-step OLS estimator, respectively. While HK, RBY
and PS stand for the fully efficient GLS estimators suggested by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.
These estimates are obtained with 1000 replications. The eigenvalues of themodel are real .800 and a double root .900 for the autoregressive(AR) operator, and
real -.530 and conjugate -.350+̄.584i (.681 in norm) for the moving-average (MA) operator. Recall that the number of eigenvalues in each of the AR and MA
operators is equal to the McMillan degree.
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Sample SizeT = 200
nT Coefficient Value Bias MSE MSE Ratio

TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS
5 µΦ ,1 .000 .000 .000 .002 .000 .000 .078 .079 .103 .080 .081 1.002 1.306 1.019 1.027

µΦ ,2 .000 .000 .000 .000 .000 .000 .083 .083 .084 .083 .081 1.003 1.013 .999 .978
φ21,0 .500 .001 .001 .002 .001 .001 .019 .019 .023 .020 .020 1.004 1.185 1.031 1.046
φ11,1 1.800 .002 .001 .016 .001 .004 .023 .023 .035 .025 .023 1.003 1.498 1.080 1.008
φ21,1 -.400 .016 .017 .012 .017 .016 .059 .060 .067 .062 .062 1.013 1.132 1.055 1.058
φ22,1 .800 .028 .030 .027 .030 .027 .087 .088 .099 .092 .092 1.012 1.132 1.054 1.050
φ11,2 -.360 .000 .000 .076 .001 .025 .073 .073 .136 .081 .075 1.007 1.858 1.112 1.027
φ12,2 -.900 .002 .002 .119 .005 .040 .109 .109 .208 .121 .112 1.007 1.910 1.110 1.026
θ 11,1 .330 .025 .026 .032 .019 .051 .080 .081 .097 .089 .090 1.009 1.214 1.103 1.123
θ 21,1 -.180 .009 .010 .008 .003 .052 .069 .070 .099 .077 .082 1.011 1.421 1.107 1.190
θ 12,1 -.200 .005 .006 .053 .000 .047 .095 .096 .113 .104 .105 1.014 1.194 1.094 1.110
θ 22,1 -.400 .025 .029 .103 .021 .089 .107 .109 .162 .119 .136 1.022 1.515 1.119 1.277
θ 11,2 -.200 .026 .028 .000 .029 .037 .082 .084 .108 .094 .085 1.015 1.308 1.140 1.032
θ 12,2 .920 .004 .006 .192 .000 .105 .136 .138 .275 .155 .161 1.013 2.013 1.133 1.179

14 µΦ ,1 .000 .003 .002 .003 .002 .003 .082 .082 .082 .081 .084 1.005 1.003 .999 1.028
µΦ ,2 .000 .003 .003 .003 .004 .004 .089 .089 .089 .089 .090 1.005 1.001 1.005 1.015
φ21,0 .500 .001 .001 .001 .001 .000 .021 .021 .021 .021 .023 1.003 1.005 1.002 1.057
φ11,1 1.800 .000 .001 .001 .001 .005 .024 .025 .025 .025 .025 1.017 1.027 1.027 1.038
φ21,1 -.400 .016 .018 .017 .018 .014 .062 .062 .062 .062 .067 1.011 1.004 1.010 1.079
φ22,1 .800 .028 .031 .029 .031 .029 .090 .091 .090 .091 .099 1.011 1.001 1.010 1.100
φ11,2 -.360 .007 .006 .004 .002 .033 .075 .077 .077 .078 .083 1.019 1.027 1.033 1.098
φ12,2 -.900 .015 .013 .010 .008 .056 .112 .114 .115 .116 .125 1.018 1.025 1.031 1.113
θ 11,1 .330 .022 .021 .021 .020 .028 .081 .082 .082 .082 .085 1.010 1.011 1.015 1.050
θ 21,1 -.180 .007 .008 .009 .008 .003 .072 .072 .074 .074 .076 .998 1.020 1.017 1.045
θ 12,1 -.200 .011 .011 .012 .010 .021 .096 .098 .097 .099 .102 1.021 1.018 1.033 1.066
θ 22,1 -.400 .033 .038 .037 .033 .045 .117 .121 .119 .120 .126 1.029 1.016 1.025 1.078
θ 11,2 -.200 .026 .027 .028 .031 .012 .083 .084 .085 .088 .080 1.014 1.021 1.056 .966
θ 12,2 .920 .020 .021 .020 .006 .063 .140 .145 .144 .147 .150 1.029 1.028 1.043 1.065

Note – TS1 and TS2 are the three-step GLS estimators based on the two-stepGLS estimator and the two-step OLS estimator, respectively. While HK, RBY
and PS stand for the fully efficient GLS estimators suggested by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.
These estimates are obtained with 1000 replications. The eigenvalues of themodel are real .800 and a double root .900 for the autoregressive(AR) operator, and
real -.530 and conjugate -.350+̄.584i (.681 in norm) for the moving-average (MA) operator. Recall that the number of eigenvalues in each of the AR and MA
operators is equal to the McMillan degree.
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Kronecker indices(2,1) since the dominant eigenvalue associated with the MA operator, namely
.681 (in norm), is not considered as persistent; see Tables 3 and 4. The same tables show that, given
the sample size, increasing the lag-ordernT reduces the large bias for HK and PS procedures, and
yields parameter estimates with MSE decreasing for the HK procedure but witha mixed tendency
for the PS method. Further, while noticing that RBY estimates are characterized with a slight in-
crease in the bias, they exhibit MSE with a mixed tendency. Besides noting thatthe bias generally
decreases withnT with all methods for the echelon VARMA(1,2), we stress that the overall ten-
dency for the MSE is not pronounced. This is due perhaps to the fact that the largest eigenvalue
associated with the MA operator, namely .824, cannot characterize the modelas less or highly per-
sistent; see Tables 1 and 2. Simulation results show that, overall, TS1, TS2 and RBY methods
outperform those of HK and PS by far. For a better idea on which procedure provides estimates
with better sample properties – since we note that those of RBY procedure behave in a way quite
similar to ours – we compute the ratio of the MSE of each procedure’s estimates relative to those
associated with TS1. Obviously, with the exception of TS2 and PS procedures, those of RBY and
(to a large extent) HK provide estimates with MSE ratios, overall, greater than unity. Note that the
cases where the MSE ratios of PS estimates are less than unity are somehow (indirectly) attributed
to relatively substantial biases characterizing some of the echelon parameter estimates. These cases
also match some situations where the reduction in the standard deviation of the estimates outweighs
the increase in the square of the associated bias. Further, the frequency of these below-unity ratios
is generally increasing withnT and decreasing with the sample size. Finally, it is noteworthy that,
while TS2 generally dominates RBY , TS1 has a slight advantage over TS2. So, choosing either
TS1 or TS2 would have no significant effect on the small-sample behavior of the resulting echelon
VARMA parameter estimates for the models studied.

6. Conclusion

This paper proposes a new three-step linear estimation procedure for stationary invertible echelon
VARMA models. It can be extended to VARMAX or integrated and cointegrated VARMA models
as well. The estimation method focuses on the echelon form parameterization asit tends to deliver
relatively parsimonious models, but may easily adapt to other parameterizations such as the final
equations form.

Our setup provides simplified and practical echelon parameter estimates that are easier to obtain
than those of Hannan and Kavalieris (1984), Reinsel et al. (1992), and Poskitt and Salau (1995). We
extend the results of Dufour and Jouini (2005) to the two-step GLS estimatorand show its consis-
tency and asymptotic normality with strong innovations. Exploiting the explicit formof the second-
stage regression residuals, we propose a new recursive filtering scheme based on consistent (hence
better) initial values for obtaining well-behaved pseudo-regressors necessary to our third-stage GLS
(fully efficient) estimation. These filtered residuals which approximate the implicitVARMA innova-
tion estimates matching the two-step linear estimator, are functions of the first-stage autoregression
residuals and the second-stage regression residuals as well. So, they take into account the truncation
error associated with the long-autoregression used in the first-stage, along with some adjustments in-
volving the first two-step regression residuals. Besides this novelty, ourthird-stage linear regression
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is derived by exploiting the nonlinear structure of the VARMA innovations in themodel parameters
without using Taylor expansion. As such, the resulting three-step GLS estimator, for which we es-
tablish its consistency and asymptotic normality with strong innovations, then showits asymptotic
equivalence to ML (hence efficiency) under Gaussian innovations, provides an intuitive interpre-
tation of nonlinear estimation methods such as nonlinear GLS and ML. Although our three-step
linear estimation procedure is asymptotically equivalent to those by Hannan and Kavalieris (1984),
Reinsel et al. (1992) and Poskitt and Salau (1995), it is computationally much simpler relatively.
In addition, the asymptotic covariance estimators we gave for the second andthird-stage echelon
VARMA parameter estimators as well, are simple and more practical for inference, especially in the
context of simulation-based techniques such as bootstrap methods or MMC tests. Finally, by exam-
ining the complex dynamic structure of the third-stage regression residuals,we provide an efficient
estimator of the covariance matrix of the VARMA innovations, which is of orderT−1 more accurate
than the one by the fourth-stage of Hannan and Kavalieris (1984).

The small-sample performance of our efficient linear estimators is studied compared to com-
peting ones, namely those of Hannan and Kavalieris (1984), Reinsel et al. (1992), and Poskitt
and Salau (1995). Simulation evidence shows that, in most cases, our fully efficient estimators
outperform their competitors in terms of bias and MSE for the models studied. Italso stresses
the sensitivity of the small-sample properties of the echelon VARMA parameter estimates to the
truncation-order of the first-stage autoregression approximating the trueinnovations. This suggests
that further investigation should be made in this way for developing efficientmodel selection pro-
cedures to estimate accurately the autoregression truncation-lag in finite samples. Indeed, such a
truncation may severely affect, through the echelon VARMA parameter estimates, the finite-sample
behavior of the resulting high dynamics or smooth functions of the VARMA slope parameters and
innovation variances, such as impulse responses, error variance decomposition, predictability mea-
sures or long-term forecasts, usually subject of interest in most appliedwork.

A. Appendix: Proofs

PROOF OF COROLLARY 4.1 Let Φ̃ (p̄) =
[

−µ̃Φ ,Φ̃0,−Φ̃1, . . . , −Φ̄p̄
]

, Φ (p̄) =
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]

and fi-

nallyYt (p̄) =
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1,y′t ,y
′
t−1, . . . , y′t−p̄

]′
. Then, in view of (4.2), (4.3), (3.9) and using the multivariate version of Lemma2.2

of Kreiss and Franke (1992), we show, fort = −nT +1, ...,T, that
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∥ũt − εt (η̃)
∥

∥ ≤
∞

∑
τ=t+nT

{

∥

∥Λτ (η)
∥

∥+
∥

∥Λτ (η̃)−Λτ (η)
∥

∥

}{

∥

∥Φ (p̄)
∥

∥+
∥

∥Φ̃ (p̄)−Φ (p̄)
∥

∥

}

∥

∥Yt−τ (p̄)
∥

∥ = Op
(

ρt+nT
)

.

(A.1)
On the other hand, using (4.11), (4.12), (3.9) and Lemma2.2of Kreiss and Franke (1992), we show, fort = 1, ...,T, that
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(A.2)

since‖ut−τ − ũt−τ (nT)‖ and‖ẽt−τ (nT)−ut−τ‖ are bothOp
(

nT/T1/2
)

in view of (3.4) and (3.12), respectively.
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PROOF OF PROPOSITION 4.1 By the triangular inequality,
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On substitutinget−τ (nT) andẽt−τ (nT) with their expressions in (3.6) and (3.11), and using (3.4), (3.9) and Lemma2.2
of Kreiss and Franke (1992), we have:
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Hence,
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(

T−1/2
)

and then
∥

∥ut (η̃)−ut
∥

∥ = Op
(

T−1/2
)

+Op
(

ρtnT/T1/2
)

, for t = 1, ...,T. Thus,

{
∥

∥

∥
Σ̃u(η̃) −Σu

∥

∥

∥
,
∥

∥

∥
Σ̃−1

u(η̃)
−Σ−1

u

∥

∥

∥

}

= Op
(

T−1/2). (A.7)

PROOF OF PROPOSITION 4.2 Note thatQ−1
X(η)

is p.d. by definition and let̄QX(η) =

{

1
T ∑T

t=1ZtΣ−1
u Zt

′
}−1

. Then

∥

∥

∥
Q̃◦−1

X(η̃)
−Q−1

X(η)

∥

∥

∥

1
≤

∥

∥

∥
Q̃◦−1

X(η̃)
−Q−1

X(η)

∥

∥

∥
≤

∥

∥

∥
Q̃◦−1

X(η̃)
− Q̄−1

X(η)

∥

∥

∥
+

∥

∥

∥
Q̄−1

X(η)
−Q−1

X(η)

∥

∥

∥
, (A.8)

where
∥

∥Q̄−1
X(η)

−Q−1
X(η)

∥

∥ =
∥

∥

∥

1
T ∑T

t=1ZtΣ−1
u Zt

′−E
[

ZtΣ−1
u Zt

′]
∥

∥

∥
= Op

(

T−1/2
)

. Further,

∥

∥

∥
Q̃◦−1

X(η̃)
− Q̄−1

X(η)

∥

∥

∥
≤

∥

∥Q1
∥

∥+
∥

∥Q2
∥

∥+
∥

∥Q3
∥

∥, (A.9)

where, specifically,Q1 = T−1 ∑T
t=1ZtΣ−1

u
[

Z◦
t (η̃ ,η) − Zt

]′, Q2 = T−1 ∑T
t=1Zt

[

Σ̃−1
u(η̃)

− Σ−1
u

]

Z◦
t (η̃ ,η)′ and, finally,

Q3 = T−1 ∑T
t=1

[

Z◦
t (η̃ ,η)−Zt

]

Σ̃−1
u(η̃)

Z◦
t (η̃ ,η)′. In particular,

∥

∥Q1
∥

∥ ≤ T−1 ∑T
t=1

∥

∥Zt
∥

∥

∥

∥

∥
Σ−1

u

∥

∥

∥

∥

∥Z◦
t (η̃ ,η)−Zt

∥

∥, where,

by invertibility of the VARMA process,E
∥

∥Zt
∥

∥

2
= O(1). Further,

∥

∥Z◦
t (η̃ ,η)−Zt

∥

∥ ≤
∥

∥R
∥

∥

{∥

∥

∥

∥

t−1

∑
τ=0

[(

Xt−τ (η̃)−Xt−τ
)

⊗Λτ (η)′
]

∥

∥

∥

∥

+

∥

∥

∥

∥

∞

∑
τ=t

[

Xt−τ ⊗Λτ (η)′
]

∥

∥

∥

∥

}

, (A.10)

with

E

∥

∥

∥

∥

∞

∑
τ=t

[

Xt−τ ⊗Λτ (η)′
]

∥

∥

∥

∥

2

≤
∞

∑
τ1=t

∞

∑
τ2=t

tr
[

ΓX (τ1− τ2)
]∥

∥Λτ1 (η)
∥

∥

∥

∥Λτ2 (η)
∥

∥ = O
(

ρ2t
)

, (A.11)

and
∥

∥

∥

∥

t−1

∑
τ=0

[(

Xt−τ (η̃)−Xt−τ
)

⊗Λτ (η)′
]

∥

∥

∥

∥

≤
t−1

∑
τ=0

∥

∥Xt−τ (η̃)−Xt−τ
∥

∥

∥

∥Λτ (η)
∥

∥, (A.12)
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with
∥

∥Xt−τ (η̃)− Xt−τ
∥

∥

2
=

p̄

∑
j=0

∥

∥ut− j−τ (η̃)− ut− j−τ
∥

∥

2. Hence
∥

∥Z◦
t (η̃ ,η)− Zt

∥

∥ = Op
(

T−1/2
)

+ Op (ρt) and then

∥

∥Q1
∥

∥ = Op
(

T−1/2
)

. Using Proposition4.1, we also show that
∥

∥Q2
∥

∥ and
∥

∥Q3
∥

∥ are bothOp
(

T−1/2
)

, since
∥

∥Z◦
t (η̃ ,η)

∥

∥

is Op (1). Hence
∥

∥

∥
Q̃◦−1

X(η̃)
− Q̄−1

X(η)

∥

∥

∥
,
∥

∥

∥
Q̃◦−1

X(η̃)
−Q−1

X(η)

∥

∥

∥
and

∥

∥

∥
Q̃◦−1

X(η̃)
−Q−1

X(η)

∥

∥

∥

1
are allOp

(

T−1/2
)

. Finally,

∥

∥

∥
Q̃◦

X(η̃) −QX(η)

∥

∥

∥

1
= Op

(

T−1/2). (A.13)

On the other hand,

∥

∥

∥
Q̃−1

X(η̃)
− Q̃◦−1

X(η̃)

∥

∥

∥

1
≤

∥

∥

∥
Σ̃−1

u(η̃)

∥

∥

∥

1
T

T

∑
t=1

{

∥

∥Zt (η̃)−Z◦
t (η̃ ,η)

∥

∥

∥

∥Zt (η̃)
∥

∥+
∥

∥Z◦
t (η̃ ,η)

∥

∥

∥

∥Zt (η̃)−Z◦
t (η̃ ,η)

∥

∥

}

, (A.14)

where, by Proposition4.1,
∥

∥

∥
Σ̃−1

u(η̃)

∥

∥

∥
= Op (1). Further, by Lemma2.2of Kreiss and Franke (1992),

∥

∥Zt (η̃)−Z◦
t (η̃ ,η)

∥

∥ ≤
∥

∥R
∥

∥

t−1

∑
τ=0

{

∥

∥Xt−τ (η̃)−Xt−τ
∥

∥+
∥

∥Xt−τ
∥

∥

}

∥

∥Λτ (η̃)−Λτ (η)
∥

∥ = Op
(

T−1/2). (A.15)

Then,
∥

∥Zt (η̃)
∥

∥ ≤
∥

∥Zt (η̃)−Z◦
t (η̃ ,η)

∥

∥ +
∥

∥Z◦
t (η̃ ,η)

∥

∥ = Op (1). Hence
∥

∥

∥
Q̃−1

X(η̃)
− Q̃◦−1

X(η̃)

∥

∥

∥
and

∥

∥

∥
Q̃−1

X(η̃)
− Q̃◦−1

X(η̃)

∥

∥

∥

1
are

bothOp
(

T−1/2
)

. Therefore,
∥

∥

∥
Q̃X(η̃) − Q̃◦

X(η̃)

∥

∥

∥

1
= Op

(

T−1/2). (A.16)

Proof A.1 4.1 Note that (4.21) can be rewritten asη̂ −η = Q̃X(η̃)Ω̃X(η̃) +Q̃◦
X(η̃)

[

Ω̃ •
X(η̃)−Ω̃ ◦

X(η̃)

]

,

whereΩ̃ ◦
X(η̃) = T−1 ∑T

t=1Z◦
t (η̃ ,η) Σ̃−1

u(η̃)ut (η̃) andΩ̃ •
X(η̃) = T−1 ∑T

t=1Z◦
t (η̃ ,η) Σ̃−1

u(η̃)ut (η). In addi-

tion, letΩX(η) = T−1 ∑T
t=1ZtΣ−1

u ut . Then, by the triangular inequality,

∥

∥η̂ −η
∥

∥ ≤
∥

∥QX(η)

∥

∥

1

∥

∥ΩX(η)

∥

∥+
∥

∥

∥
Q̃◦

X(η̃)−QX(η)

∥

∥

∥

1

∥

∥

∥
Ω̃ •

X(η̃)

∥

∥

∥
+

∥

∥QX(η)

∥

∥

1

∥

∥

∥
Ω̃ •

X(η̃)−ΩX(η)

∥

∥

∥

+
∥

∥

∥
Q̃X(η̃)− Q̃◦

X(η̃)

∥

∥

∥

1

∥

∥

∥
Ω̃X(η̃)

∥

∥

∥
+

∥

∥

∥
Q̃◦

X(η̃)

∥

∥

∥

1

∥

∥

∥
Ω̃X(η̃)− Ω̃ ◦

X(η̃)

∥

∥

∥
, (A.17)

where
∥

∥QX(η)

∥

∥

1 = Op (1),
∥

∥ΩX(η)

∥

∥ = Op
(

T−1/2
)

, while
∥

∥

∥
Q̃◦

X(η̃)−QX(η)

∥

∥

∥

1
and

∥

∥

∥
Q̃X(η̃)− Q̃◦

X(η̃)

∥

∥

∥

1

are bothOp
(

T−1/2
)

. In addition, setS1 = T−1 ∑T
t=1ZtΣ−1

u

[

ut (η)−ut
]

, S2 = T−1 ∑T
t=1Zt

[

Σ̃−1
u(η̃) −

Σ−1
u

]

ut (η) andS3 = T−1 ∑T
t=1

[

Z◦
t (η̃ ,η)−Zt

]

Σ̃−1
u(η̃)ut (η). Then

∥

∥

∥
Ω̃ •

X(η̃)−ΩX(η)

∥

∥

∥
≤

∥

∥S1
∥

∥+
∥

∥S2
∥

∥+
∥

∥S3
∥

∥. (A.18)
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Using the fact that‖ut −ut (η)‖ = Op
(

ρ tnT/T1/2
)

and that
∥

∥vec
[

B
]∥

∥ =
∥

∥B
∥

∥, we show that

E
∥

∥S1
∥

∥ ≤
∥

∥R
∥

∥

1
T

T

∑
t=1

∞

∑
τ=0

∥

∥Λτ (η)
∥

∥

∥

∥Σ−1
u

∥

∥

{

E
∥

∥ut (η)−ut
∥

∥

2
}1/2{

E
∥

∥Xt−τ
∥

∥

2
}1/2

= O
( nT

T3/2

)

.

(A.19)
Moreover,

∥

∥S2
∥

∥ ≤
∥

∥

∥

∥

1
T

T

∑
t=1

Zt

[

Σ̃−1
u(η̃)−Σ−1

u

]

[

ut (η)−ut
]

∥

∥

∥

∥

+

∥

∥

∥

∥

1
T

T

∑
t=1

Zt

[

Σ̃−1
u(η̃)−Σ−1

u

]

ut

∥

∥

∥

∥

, (A.20)

where, as in (A.19),

∥

∥

∥

∥

1
T ∑T

t=1Zt

[

Σ̃−1
u(η̃)−Σ−1

u

]

[

ut (η)−ut
]

∥

∥

∥

∥

= Op
(

nT/T2
)

. Further, using Proposi-

tion 4.1,
∥

∥

∥

∥

1
T

T

∑
t=1

Zt

[

Σ̃−1
u(η̃)−Σ−1

u

]

ut

∥

∥

∥

∥

≤
∥

∥

∥
Σ̃−1

u(η̃)−Σ−1
u

∥

∥

∥

{ ∞

∑
τ=0

∥

∥Λτ (η)
∥

∥

∥

∥

∥

∥

1
T

T

∑
t=1

utX
′
t−τ

∥

∥

∥

∥

}

= Op
(

T−1), (A.21)

since

∥

∥

∥

∥

1
T ∑T

t=1utX′
t−τ

∥

∥

∥

∥

= Op
(

T−1/2
)

, by the VARMA structure ofyt . Hence,
∥

∥S2
∥

∥ = Op
(

T−1
)

.

Finally,
∥

∥S3
∥

∥ ≤
∥

∥Ω 1
Z(η̃)

∥

∥+
∥

∥Ω 2
Z(η̃)

∥

∥, (A.22)

where Ω 1
Z(η̃) = T−1 ∑T

t=1

[

Z◦
t (η̃ ,η) − Zt

]

Σ̃−1
u(η̃)

[

ut (η) − ut
]

and Ω 2
Z(η̃) = T−1 ∑T

t=1

[

Z◦
t (η̃ ,η) −

Zt
]

Σ̃−1
u(η̃)ut . Also,

∥

∥Ω 1
Z(η̃)

∥

∥ ≤
∥

∥Ω 11
Z(η̃)

∥

∥+
∥

∥Ω 12
Z(η̃)

∥

∥+
∥

∥Ω 13
Z(η̃)

∥

∥ , with (A.23)

Ω 11
Z(η̃) =

1
T

T

∑
t=1

∞

∑
τ=t

R′[Xt−τ ⊗Λτ (η)′
]

Σ̃−1
u(η̃)

[

ut (η)−ut
]

, (A.24)

Ω 12
Z(η̃) =

1
T

T

∑
t=1

t−1

∑
τ=0

R′
[

{

Xt−τ (η)−Xt−τ
}

⊗Λτ (η)′
]

Σ̃−1
u(η̃)

[

ut (η)−ut
]

, (A.25)

Ω 13
Z(η̃) =

1
T

T

∑
t=1

t−1

∑
τ=0

R′
[

{

Xt−τ (η̃)−Xt−τ (η)
}

⊗Λτ (η)′
]

Σ̃−1
u(η̃)

[

ut (η)−ut
]

, (A.26)

whereXt (η) =
[

1,vt (η)′ ,y′t−1, . . . , y′t−p̄,ut−1(η)′ , . . . , ut−p̄(η)′
]′

andvt (η) = yt −ut (η). Simi-
larly, we have

∥

∥Ω 11
Z(η̃)

∥

∥ ≤
∥

∥R
∥

∥

∥

∥

∥
Σ̃−1

u(η̃)

∥

∥

∥

{

1
T

T

∑
t=1

∞

∑
τ=t

∥

∥Λτ (η)
∥

∥

∥

∥

∥

[

ut (η)−ut
]

X′
t−τ

∥

∥

∥

}

= Op

( nT

T3/2

)

, (A.27)
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sinceE

(

1
T ∑T

t=1 ∑∞
τ=t

∥

∥Λτ (η)
∥

∥

∥

∥

∥

[

ut (η)−ut
]

X′
t−τ

∥

∥

∥

)

= O
(

nT/T3/2
)

. Further,

∥

∥Ω 12
Z(η̃)

∥

∥ ≤
∥

∥R
∥

∥

∥

∥

∥
Σ̃−1

u(η̃)

∥

∥

∥

{

1
T

T

∑
t=1

∥

∥ut (η)−ut
∥

∥

( t−1

∑
τ=0

∥

∥Λτ (η)
∥

∥

2
)1/2( t−1

∑
τ=0

∥

∥Xt−τ (η)−Xt−τ
∥

∥

2
)1/2}

,

(A.28)
where

∥

∥Xt−τ (η) − Xt−τ
∥

∥

2
= ∑p̄

j=0

∥

∥ut− j−τ (η) − ut− j−τ
∥

∥

2
, with E

∥

∥ut− j−τ (η) − ut− j−τ
∥

∥ =

O
(

ρ t− j−τnT/T1/2
)

. Hence,
∥

∥Xt−τ (η)−Xt−τ
∥

∥

2
= Op

(

ρ2(t−τ)n2
T/T

)

and then∑t−1
τ=0

∥

∥Xt−τ (η)−
Xt−τ

∥

∥

2
= Op

(

n2
T/T

)

. Therefore,
∥

∥Ω 12
Z(η̃)

∥

∥ is Op
(

n2
T/T2

)

. On the other hand,

∥

∥Ω 13
Z(η̃)

∥

∥ ≤
∥

∥R
∥

∥

∥

∥

∥
Σ̃−1

u(η̃)

∥

∥

∥

{

1
T

T

∑
t=1

( t−1

∑
τ=0

∥

∥Λτ (η)
∥

∥

∥

∥ut (η)−ut
∥

∥

∥

∥Xt−τ (η̃)−Xt−τ (η)
∥

∥

)}

, (A.29)

with
∥

∥Xt−τ (η̃)−Xt−τ (η)
∥

∥

2
= ∑p̄

j=0

∥

∥ut− j−τ (η̃)− ut− j−τ (η)
∥

∥

2
. Therefore, we get

∥

∥Ω 13
Z(η̃)

∥

∥ =

Op
(

nT/T2
)

, since
∥

∥ut (η)− ut
∥

∥ = Op
(

ρ tnT/T1/2
)

and
∥

∥ut (η̃)− ut (η)
∥

∥ = Op
(

T−1/2
)

. Hence,
∥

∥Ω 1
Z(η̃)

∥

∥ = Op
(

nT/T3/2
)

. Further,

∥

∥Ω 2
Z(η̃)

∥

∥ ≤
∥

∥Ω 21
Z(η̃)

∥

∥+
∥

∥Ω 22
Z(η̃)

∥

∥+
∥

∥Ω 23
Z(η̃)

∥

∥ , with (A.30)

Ω 21
Z(η̃) =

1
T

T

∑
t=1

∞

∑
τ=t

R′[Xt−τ ⊗Λτ (η)′
]

Σ̃−1
u(η̃)ut , (A.31)

Ω 22
Z(η̃) =

1
T

T

∑
t=1

t−1

∑
τ=0

R′
[

{

Xt−τ (η)−Xt−τ
}

⊗Λτ (η)′
]

Σ̃−1
u(η̃)ut , (A.32)

Ω 23
Z(η̃) =

1
T

T

∑
t=1

t−1

∑
τ=0

R′
[

{

Xt−τ (η̃)−Xt−τ (η)
}

⊗Λτ (η)′
]

Σ̃−1
u(η̃)ut , (A.33)

Similarly,
∥

∥Ω 21
Z(η̃)

∥

∥ ≤
∥

∥R
∥

∥

∥

∥

∥
Σ̃−1

u(η̃)

∥

∥

∥

{

1
T

T

∑
t=1

∞

∑
τ=t

∥

∥Λτ (η)
∥

∥

∥

∥utX
′
t−τ

∥

∥

}

= Op
(

T−1), (A.34)

sinceE

(

1
T ∑T

t=1 ∑∞
τ=t

∥

∥Λτ (η)
∥

∥

∥

∥utX′
t−τ

∥

∥

)

= O
(

T−1
)

. Hence
∥

∥Ω 21
Z(η̃)

∥

∥ = Op
(

T−1
)

. Further,
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∥

∥

∥

∥

∥
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u(η̃)

∥

∥

∥

{

1
T
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∑
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∑
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∥

∥Λτ (η)
∥

∥

∥
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[
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∥

}

=
∥
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∥
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∥
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sinceE
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where
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Therefore, using Lemma2.2of Kreiss and Franke (1992),∆1 = Op
(
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)
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.
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Using the same arguments as before, we see that
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we conclude that
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Using Proposition4.2and Theorem4.1, we show that
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. Therefore, by

the central limit theorem for stationary processes [see Anderson (1971, Section 7.7), Scott (1973,
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PROOF OF PROPOSITION 4.3 Note that (4.25) reduces to
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sinceεt (η̃ , η̂) = ωt (η̃)−Zt (η̃)′ η̂ andωt (η̃) = ut (η̃)+Zt (η̃)′ η̃ . Therefore, using Lemma2.2 of Kreiss and Franke
(1992), Proposition4.1, (3.9) and Theorem4.1, we get:
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for t = p̄+1, ...,T. Then as in Proposition4.1, we show that
∥

∥Σ̃u(η̂) −Σu
∥
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)

.
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