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Invariant tests based on M-estimators, estimating
functions, and the generalized method of moments

Jean-Marie Dufour’, Alain Trognon?, Purevdorj Tuvaandorj ®

Résumé/abstract

We study the invariance properties of various test criteria which have been proposed for hypothesis
testing in the context of incompletely specified models, such as models which are formulated in terms
of estimating functions (Godambe, 1960, Ann. Math. Stat.) or moment conditions and are estimated by
generalized method of moments (GMM) procedures (Hansen, 1982, Econometrica), and models
estimated by pseudo-likelihood (Gouri’eroux, Monfort and Trognon, 1984, Econometrica) and M-
estimation methods. The invariance properties considered include invariance to (possibly nonlinear)
hypothesis reformulations and reparameterizations. The test statistics examined include Wald-type,
LR-type, LM-type, score-type, and C(a)—type criteria. Extending the approach used in Dagenais and
Dufour (1991, Econometrica), we show first that all these test statistics except the Wald-type ones are
invariant to equivalent hypothesis reformulations (under usual regularity conditions), but all five of
them are not generally invariant to model reparameterizations, including measurement unit changes in
nonlinear models. In other words, testing two equivalent hypotheses in the context of equivalent
models may lead to completely different inferences. For example, this may occur after an apparently
innocuous rescaling of some model variables. Then, in view of avoiding such undesirable properties,
we study restrictions that can be imposed on the objective functions used for pseudo-likelihood (or M-
estimation) as well as the structure of the test criteria used with estimating functions and GMM
procedures to obtain invariant tests. In particular, we show that using linear exponential pseudo-
likelihood functions allows one to obtain invariant scoretype and C(a)—type test criteria, while in the
context of estimating function (or GMM) procedures it is possible to modify a LR-type statistic
proposed by Newey and West (1987, Int. Econ. Rev.) to obtain a test statistic that is invariant to
general reparameterizations. The invariance associated with linear exponential pseudo-likelihood
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functions is interpreted as a strong argument for using such pseudo-likelihood functions in empirical
work.
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1. Introduction

Model and hypothesis formulation in econometrics and statistics typically imeofuember of ar-
bitrary choices, such as the labelling of i.i.d. observations or the selectioreafurement units.
Further, in hypothesis testing, these choices do not affect the inteipnetéthe null and the alter-
native hypotheses. When this is the case, it appears desirable that slatisgrence remaimvari-
ant to such choices; see Hotelling (1936), Pitman (1939), Lehmann (19&$Ht&h3), Lehmann
(1986, Chapter 6) and Ferguson (1967). Among other things, whewdihe null hypothesis is
written has no particular interest or when the parameterization of a modefj&yarbitrary, it is
natural to require that the results of test procedures do not depesuthrchoices. This holds, for
example, for standarndandF tests in linear regressions undisear hypothesis reformulations and
reparameterizations. imonlinearmodels, however, the situation is more complex.

It is well known that Wald-type tests are not invariant to equivalent thygsis reformulations
and reparameterizations; see Cox and Hinkley (1974, p. 302), Biergballant and Souza (1982, p.
185), Gregory and Veall (1985), Vaeth (1985), Lafontaine and Wh&86), Breusch and Schmidt
(1988), Phillips and Park (1988), and Dagenais and Dufour (1994 general possibly nonlinear
likelihood models (which are treated as correctly specified), we showedwiops work [Dagenais
and Dufour (1991, 1992), Dufour and Dagenais (1992)] that fmmytest procedures are invariant
to general hypothesis reformulations and reparameterizations. Thamvarocedures essentially
reduce to likelihood ratio (LR) tests and certain variants of score [ordragr multiplier (LM)]
tests where the information matrix is estimated with either an exact formula forxpedted) in-
formation matrix or an outer product form evaluated at the restricted maximuiihiilod (ML)
estimator. In particular, score tests are not invariant to reparameterigatizen the information
matrix is estimated using the Hessian matrix of the log-likelihood function evaluatttk ae-
stricted ML estimator. Furthe€(a) tests are not generally invariant to reparameterizations unless
special equivariance properties are imposed on the restricted estimsg¢arsouimplement them.
Among other things, this means that measurement unit changes with no ireiolenice null hy-
pothesis tested may induce dramatic changes in the conclusions obtaingldrmsts and suggests
that invariant test procedures should play a privileged role in statistifsakince.

In this paper, we study the invariance properties of various test critdriehvhave been pro-
posed for hypothesis testing in the context of incompletely specified modetsas models which
are formulated in terms of estimating functions [Godambe (1960)] — or momeuditmms — and
are estimated by generalized method of moments (GMM) procedures [Hdr@R:1)], and models
estimated by-estimation [Huber (1981)] or pseudo-likelihood methods [Genatiix, Monfort and
Trognon (1984, 1984), Gouréroux and Monfort (1993)]. For general discussions of infeednc
such models, the reader may consult White (1982), Newey (1985), G@l8i7), Newey and West
(1987), Gallant and White (1988), Goéroux and Monfort (1989, 1995), Godambe (1991), David-
son and MacKinnon (1993), Newey and McFadden (1994), Hall{199d Matyas (1999); for
studies of the performance of some test procedures based on GMM ess$ins&t® also Burnside
and Eichenbaum (1996) and Podivinsky (1999).

The invariance properties we consider include invariance to (possilmlimear) hypothesis
reformulations and reparameterizations. The test statistics examined inchldaye, LR-type,



LM-type, score-type, an@(a)-type criteria. Extending the approach used in Dagenais and Dufour
(1991) and Dufour and Dagenais (1992), we show first that all tessestatistics except the Wald-
type ones are invariant to equivalent hypothesis reformulations (wstdeit regularity conditions),
but all five of them ar@ot generally invarianto model reparameterizations, including measurement
unit changes in nonlinear models. In other words, testing two equivaygatiheses in the context
of equivalent models may lead to completely different inferences. Fongbea this may occur after
an apparently innocuous rescaling of some model variables.

In view of avoiding such undesirable properties, we study restrictionsdmebe imposed on the
objective functions used for pseudo-likelihood (or M-estimation) as vediha structure of the test
criteria used with estimating functions and GMM procedures to obtain invagats. In particular,
we show that using linear exponential pseudo-likelihood functions allowest@ obtain invariant
score-type an€(a)-type test criteria, while in the context of estimating function (or GMM) pro-
cedures it is possible to modify a LR-type statistic proposed by Newey aist (A@87) to obtain
a test statistic that is invariant to general reparameterizations. The irsa@asgociated with linear
exponential pseudo-likelihood functions can be viewed as a strongargdor using such pseudo-
likelihood functions in empirical work. Of course, the fact that Wald-tymtst@re not invariant to
both hypothesis reformulations and reparameterizations is by itself a sngumg@nt to avoid using
this type of procedure (when they are not equivalent to other proesgdand suggest as well that
Wald-type tests can be quite unreliable in finite samples; for further argurgeimtg in the same
direction, see Burnside and Eichenbaum (1996), Dufour (199d)Parfiour and Jasiak (2001).

In Section 2, we describe the general setup considered, while the testtcstastudied are de-
fined in Section 3. The invariance properties of the available test statistic$ualied in Section 4.
In Section 5, we make suggestions for obtaining tests that are invarianeoadbypothesis refor-
mulations and reparameterizations. Numerical illustrations of the invarianden@invariance)
properties discussed are provided in Section 6. In Section 7, we coliegkr stochastic discount
factor model as an empirical example and show that noninvariant pneesechay yield drastically
different outcomes depending on the identifying restrictions imposed. Wiumte in Section 8.

2. Framework

We consider an inference problem about a parameter of in@re® C RP. This parameter appears
in a model which is not fully specified. In order to identfly we assume there exisiax 1 vector
score-type functiol®,, (8; Z,) whereZ, = (21,2, ...,2,]" is an x k stochastic matrix such that

Dn(6; Zy) rHLo:Dm(e; 6o) . (2.1)
Do (-; B0) is @a mapping fron® ontoR™ such that:

Do (6; 8p) =0<= 0 =06 (2.2)



so the value 0B is uniquely determined b.. (8; 8) . Furthermore, we assume:

VD (80; Zn) = N[O, (60)] (2.3)
Hn (60; Zq) = je,Dn(Go; Zn) = J(60) (2.4)

wherel (6p) andJ (6g) arem x mandm x p full-column rank matrices.
Typically, such a model is estimated by minimizing with resped m expression of the form

Mn (8, Wh) = Dn (6; Zn) WhDn (6; Z1) (2.5)

whereW, is a symmetric positive definite matrix. The method of estimating equations [Durbin
(1960), Godambe (1960, 1991), Basawa, Godambe and Taylor ){19¥#9¢ generalized method

of moments [Hansen (1982), Hall (2004)], maximum likelihood, pseudoimanx likelihood,M-
estimation and instrumental variable methods may all be cast in this setup. Wmdealyegularity
conditions, the estimatdt, so obtained has a normal asymptotic distribution:

VA (8~ B0) = N[0, 5 (Vp)] (2.6)
where
= (Vb) = (3Wodo) " JoWWbloWbdo (JWbdo) ™, 2.7)

Jo=J(60), lo=1(60p) , Wo = plimW, ,det(Wp) # O; see Gouéroux and Monfort (1995, Ch. 9).

n—oo

If we assume that the number of equations is equal to the number of parsufmeterp) , a
general method for estimatir@yalso consists in finding an estimatyt which satisfies the equation

Dn(Bhn; Zn) = 0. (2.8)

Typically, in such casedDn (6; Z,) is the derivative of an objective functidd(6; Z,), which is
maximized (or minimized) to obtaifl,,, so that

0%, (6; Zn 05, (6; Zn

In this case,/n (8, — o) is asymptotically normal with zero mean and asymptotic variance

5b(60) = [3(80)'1 (B0) *3(60)] " = (%lg %) " (2.9)

Obviously, condition (2.8) is entailed by the minimizationM§ (6) whenm = p. It is also inter-
esting to note that problems with > p can be reduced to cases with= p through an appropriate
redefinition of the score-type functi®y, (0; Z,), so that the characterization (2.8) also covers most
classical asymptotic estimation methods. A typical list of methods is the following.

a) Maximum likelihood.In this case, the model is fully specified with log-likelihood function



Ln (6; Zn) and score function
10

noe
b) Generalized method of mome@&MM). O is identified through an x 1 vector of conditions of
the form:E[h: (6;z)] =0, t=1,...,n.Then one considers the sample analogue of this mean,

Dn(6; Zn) = Ln(6; Zn) . (2.10)

Fn () = iin(e;zt), (2.11)

and the quadratic form B B

whereW, is a symmetric positive definite matrix. In this case, the score-type function is:

ah{’;(e)/wnhn(e) . (2.13)

C) M-estimator.9, is defined by minimizing (or maximizing) an objective functibiy of the form:

_ n

Vi (6 Z0) = > £(0:7). (2.14)
t=

The score function has the following form:

9

D(G'Z)—a—'\m‘(e'Z)—}n £(0;z) (2.15)
nl% ) =55 ’n_nt;06 v h). .
3. Test statistics
Consider now the problem of testing

Ho: @ (6)=0 (3.2)

wherey (0) is ap; x 1 continuously differentiable function &, 1 < p; < p and thep; x p matrix

P()= 2% (3.2)

has full row rank (at least in an open neighborhoodgyf. Let 6 be the unrestricted estimator
obtained by minimizingvi, (6), andé?, the corresponding constrained estimator uridier
At this stage, it is not necessary to specify closely the way the matrigs andJ(6o) are

estimated. We will denote by andJo or by i andJ the corresponding estimated matrices depending
on whether they are obtained with or without the restrictjof®) = 0. In particular, if

n

Dn (6; Zy) = % erh(e;zt)a (3.3)
t=



standard definitions df(8) andJ(6) would be:

9D,

[(6)= itziht (6;z)h(6;2) , J(6)= 50

(8) =Hn(6; Z,) , (3.4)

where8 can be replaced by an appropriate estimator.
Forl(8), other estimators are also widely used. Here, we shall consider geséraators of

the form
R n n

1(6) = lewst(n) hs (85 zs) x (6; z)" = h(6; Zn)W (n)h(6; Z,)' (3.5)
s=1t=

whereW (n) = [we(n)] is anx n matrix of weights (which depend of the sample sizand,
possibly, on the data) and

h(68;Z) = [h(8;21),h2(6;22), ..., (6 2) ] . (3.6)
For example, a “mean corrected” version ¢8) may be obtained on taking (n) = %(In - %:nlg),
wherel, is the identity matrix of ordenandi, = (1, 1, ..., 1), which yields

- 10 _ —

[(©)= 33 Ihe(6:2)=(0)] [ (6: ) ~F(B)] (3.7)

t=
whereh() = % §n(e; z) . Similarly, so-called “heteroskedasticity-autocorrelation consistent
t=1

(HAC)” covariance matrix estimators can usually be rewritten in the form (3l®)most cases,
such estimators are defined by a formula of the type:

n-1 _ R
@)= Y k(i/Bn)F(j.0) (3.8)
j=—n+1

whereE(-) is a kernel functionBy is a bandwidth parameter (which depends on the sample size
and, possibly, on the data), and

> h(6:z)h(6;z2 ), ifj>0,
F,0)=¢ " (3.9)
Ty hyj(8z)h(62), if j<O.
t=—]+1
For further discussion of such estimators, the reader may consult Newigy/est (1987), Andrews
(1991), Andrews and Monahan (1992), Hansen (1992), andi@yisihd McGarvey (1999).
In this context, analogues of the Wald, LM, score &) test statistics can be shown to
have asymptotic null distributions without nuisance parameters, naxtély,) distributions. On
assuming that the referenced inverse matrices do exist, these test catelia defined as follows:



(a) Wald-type statistic,

W (@) = ng(8n) [P(FT19) '] w(6n) (3.10)

whereP = P(8,,), [ = 1(8,) andJ = J(8,); (b) score-type statistic,

~0 A e 1an—la ~0
S(W) = nDn(By; Z0)' T 3o (Il 1) ~ ol 1Dn(8r; Z0) (3.11)

wherefp = (8°) andJp = J(8); (c) Lagrange-multiplier (LM) type statistic,

LM (@) = nA Bo(Joiy o) " PoAn (3.12)

whereRy = P(ég) and)\An is the Lagrange multiplier in the corresponding constrained optimization
problem; (d)C(a)-type statistic,

PC(81; ¥) = nDn(8r; Zo) \WbDn(8p; Zn) (3.13)
whereég is any rootn consistent estimator @ that satisfie:w(ég) =0, and
Vb = Tl 3o (Joi 1) % [Bo (Jh 200) 28] 2o (Joiy L) i
with By = P(82), To = 1(8°) andJo = J(8Y).
The above Wald-type and score-type statistics were discussed by lded&yest (1987) in the
context of GMM estimation, and for pseudo-maximum likelihood estimation byriong1984).
TheC (a)-type statistic is given by Davidson and MacKinnon (1993, p. 619). @fsm LR-type

statistics based on the difference of the maxima of the objective fungtidh Z,) have also been
considered in such contexts:

LR(W) = S(Oni Zn) — (O Zn) - (3.14)

Itis well known that, in general, this difference is distributed as a mixturedd#pendent chi-square
with coefficients depending upon nuisance parameters [see, for exdmggdaon (1984) and Vuong
(1989)]. Nevertheless, there is one “LR-type” test statistic whose disiitb is asymptotically
pivotal with a chi-square distribution, namely tBestatistic suggested by Newey and West (1987):

Diw () =N [Mn(8h,T0) — Mn (81, T0)] (3.15)

where N N
Mn (6, 10) = Dn(8; Zn) o 'Dn(6; Zn) , (3.16)

io is a consistent estimator 6f6p), 8, minimizesM; (6, i) without restriction ancﬁg minimizes
Mn(6,1o) under the restrictioy (8) = 0. Note, however, that this “LR-type” statistic is more accu-
rately viewed as a score-type statisticDif is the derivative of some other objective functiang,



a log-likelihood function), the latter is not used as the objective functiondpliéced by a quadratic
function of the “score’Dy,.
Using the constrained minimization condition,

Hi (B1; Zn)'T 2D (B5; Zn) = P(87) An, (3.17)

we see that
S(¢)=LM(y) , (3.18)

i.e., the score and LM statistics are identical in the present circumstanadiseri-it is interesting

to observe that the score, LM af a)-type statistics given above may all be viewed as special
cases of a more gener@l a)-type statistic obtained by considering the generalized “score-type”
function :

S(ég,Wn) = \mé[ h] Dn(ég; Zn)

whered” is consistent restricted estimate@yf such thaty(8°) = 0 and,/f(8° — Bo) is asymptot-
ically bounded in probability,

QWh] = Bo(FWhJo) L3k,
By =P(8Y), b = J(Br), andW, is a symmetric positive definite (possibly randomy m matrix
such that

plimW, =Wy, det(Wp) # 0.

n—oo

Under standard regularity conditions, we have:

(8% Zn) - N[0,Q(60) 1 (60) Q(60)']

where

Q(80) = plimQMk] = P(80) [3(80) Wod (80)] ~* 3 (80) Wo

n—oo

and rankQ(8o)] = p1. This suggests the following generalizéda) criterion:
PC(ég; Y,Wh) =n Dn(égi Zn) QM) { QW] i0Q W]’ }_1Q[Wn] Dn(égi Zy) (3.19)

wherelp = f(ég) . Under general regularity conditions, the asymptotic distributid?(c(fég; Lp,Wn)

is x2 (p1) underHp. Itis clear thaPC(ég; ¥, W;) includes as special cases various oter )-type
statistics proposed in the statistical and econometric literatures. On \M{iﬁj& 1 as suggested by
efficiency argumentsP,C(ég; Y, Ws) reduces t@C(ég; ) in (3.13). When the number of equations
equals the number of parametérs = p), we haveQ W] = By and PC(By; ¢, Ws) does not

IThe regularity conditions and a regorous proof of the latter assertiosaap the working paper version of this
article [Dufour, Trognon and Tuvaandorj (2013)]. For furthercdission ofC(a) tests, the reader may consult Basawa
(1985), Ronchetti (1987), Smith (1987), Berger and WallensteinqQ),9Bagenais and Dufour (1991), Davidson and
MacKinnon (1991, 1993) and Kocherlakota and Kocherlakota (1991)



depend on the choice WY, :

PC(Br; W, Wh) = PC(8Y; @) = Dn(Br; Zo)' (3 1) B [Bo(Foig “do) B~ Pody LD (BY: Z0)

In particular, this will be the case B, (8; Z,) is the derivative vector of a (pseudo) log-likelihood
function. Finally, form> p, when®} is obtained by minimizing/, (6) = Dy, (6; Z1)' 5 Dn (6; Zs)
subject tay (6) = 0, we can writeég = éﬁ,’ andPC(ég; (,U,Wn) is identical to the score (or LM)-type
statistic suggested by Newey and West (1987). Since the st&t@(ié?,; t,U,Wn) is quite compre-
hensive, it will be convenient for establishing general invarianceltes

4. Invariance

Following Dagenais and Dufour (1991), we will consider two types of riavece properties: (1)
invariance with respect to the formulation of the null hypothesis, and (2yi@mwce with respect to
reparameterizations.

4.1. Hypothesis reformulation

Let
G={6€0|yY(v) =0} (4.1)

and¥ be the set of differentiable functions: © — R™ such that
{00 |yY((6)=0}=06y. 4.2)

A test statistic is invariant with respect¥if it is the same for ally € . It is obvious the LR-type
statisticsLR(y) and Dnw(y) (when applicable) are invariant to such hypothesis reformulations
because the optimal values of the objective function (restricted or uctedrdo not depend on
the way the restrictions are written. Now, a reformulation does not dffécly andJo. The same
holds forip andJp provided the restricted estlmater1 used withC (a) tests does not depend on
which functiony € ¥ is used to obtain it. HoweveP, A, andw( ) changeFollowing Dagenais
and Dufour (1991), ifp € ¥, we have:

P(6)= 24 —F(6)G(6) . P(8)= 2=

PL(0)G(6) , (4.3)
whereP andP; are twopy x py invertible functions ands (6) is a py x p full row-rank matrix.
SinceP? A, = PY A, whereP? = P;(B1), B = Py(85) andA , is the Lagrange multiplier associated
with (, we deduce that all the statistics, except the Wald-type statistics, are inwaiiamespect
to a reformulation. This leads to the following proposition.



Proposition 4.1 INVARIANCE TO HYPOTHESIS REFORMULATIONS Let ¥ be a family of

oy

p1 x 1 continuously differentiable functions 6f such thatﬁ has full row rank wheny (6) =
0(1<p1<p),and
PYO)=0<=yY(O)=0VyY,Pec¥. (4.4)

Then, T(¢) = T (¢) where T stands for any one of the test statisticg¢ 5 LM (), PC(ég; Y),
LR((), Dnw (@) and PQBY; ¢, W) defined in(3.11) - (3.15) and (3.19).

Note that the invariance of th&(y), LM (¢), LR(¢) and Dyw (@) statistics to hypothesis
reformulations has been pointed out by Géwix and Monfort (1989) for mixed-form hypotheses.

4.2. Reparameterization

Let g be a one-to-one differentiable transformation fren RPto©, CRP: 6, =g(6). grepre-
sents a reparameterization of the parameter veéttora new ond,.. The latter is often determined
by a one-to-one transformation of the d@ta = g(Z,), as occurs for example when variables are
rescaled (measurement unit changes). But it may also represerdramegterization without any
variable transformation. Lét= g~* be the inverse function associated wgth —

k(6.) =g 1(6.)=80. (4.5)
Set e Ik
G(6) = 0% andK (6.) = . . (4.6)

Sincek[g(6)] = 6 andg[k(6.)] = 8., we have by the chain rule of differentiation:

K[g(8)]G(8) =1pandG[k(6,)]K(6,)=1p,7¥0,€0,,V0cO. 4.7)
Let
Y (6.)=ylg*(6.)] - (4.8)
Clearly,

andH; : ¢* (6,) = 0 is an equivalent reformulation ¢o : ¢ (8) = 0 in terms of6,.. We shall
call ¢*(6.) = 0 thecanonical reformulatiorof ¢ (8) = 0 in terms off,.. Other (possibly more
“natural”) reformulations are of course possible, but the latter has theeogent property that
Y (6.) = Y(0). If a test statistic is invariant to reparameterizations when the null hypothesis is
reformulated ags* (6..) = 0, we will say it iscanonically invariant

By the invariance property of Propositighl, it will be sufficient for our purpose to study
invariance to reparameterizations for any given reformulation of the gplbthesis in terms of..
From the above definition ap* (8.), it follows that

_ oyt oy 06

P.(6:)= G5gr = 957 ag7 = PIK(B-IK(8.) = P(O)K[g(6)] (4.10)




We need to make an assumption on the way the score-type furiatight Z,) changes under
a given reparameterization We will consider two cases. The first ongiste in assuming that

Dn(6;Zy) = Z h(6; z) /nas in (3.3) where the values of the scores are unaffected by themepara

eterization, but are simply reexpressed in term8,0ndz, (invariant scorek
h(6.;z:.)=h(6;z), t=1...,n, (4.12)

whereZ,, = g(Z,) and6. = g(6). The second one is the one wh&g(0; Z,) can be interpreted
as the derivative of an objective function.
Under condition (4.11), we see easily that

0Dn. (6*; Zn*)

Hn*(9*1zn*) — ae/

= Hn (6; Zn) K (6.) = Hn (6; Zn)K[g(6)] . (4.12)

Further the function§(6) andJ(8) in (3.4) are then transformed in the following way :

(6. =1(0),3.(6.)=3(O)K[F(O)] .
If F(e) andJ(0) are defined as in (3.4) W, =W, and if éﬁ is equivariant with respect tg
li.e, éﬂ* = g(éﬁ)], itis easy to check that the generalize(tr) statistic defined in (3.19) is invariant

to the reparameterizatiof, = g(6). This suggests the following general sufficient condition for
the invariance o€ (o) statistics.

Proposition 4.2 C(a) CANONICAL INVARIANCE TO REPARAMETERIZATIONS. INVARIANT
SCORE CASE Lety*(6.) =y [g *(6.)], and suppose the following conditions hold :

(b)  Dn.(Bhe; Zn) = DB Zn).

(C) lox = lgandJg, = JoK,

(d)  Whe =W,

wherelo, Jo and W, are defined as iff3.19), andK = K(8°, ) is invertible. Then

PC*(ég*1 w*,Wn*) = nﬁfq*éé)* (QE)* rO*(jO*)_l(jO*Dn* - PC(ég; w,Wn)
where f)n* _ Dn*(ég*’zn*)’ QO* — ISO*(JN(’)*Wn*J?)*) JO*Wn*7 PO* = P(B *) and B(e*) =
oyY*/0e..

It is clear that the estimato, and 8" satisfy the equivariance condition, i.@y. = 9(6n)

and é?,* =0 (éﬂ). Consequently, the above invariance result also applies to score (ostakiftics.

It is also interesting to observe that (¢*) = W (). This holds, however, only for the special
reformulationy* (6..) = ¢ [g1(6.)] = 0, not for all equivalent reformulationg, (6..) = 0. On
applying Propositiod. 1, this type of invariance holds for the other test statistics. These obs&watio
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are summarized in the following proposition.

Theorem 4.3 TEST INVARIANCE TO REPARAMETERIZATIONS AND GENERAL HYPOTHBIS RE
FORMULATIONS: INVARIANT SCORE CASE Lety, : ©, — © be any continuously differentiable
function off. € O, such thaty, (g(0)) =0« ¢ (0) =0, let m= p and suppose

(@) Dn.(9(8); Zn:) =Dn(6;Zn) ,
(b) 1.[g(6)]=1(6) andJ.[g(6)] = I(6)K[g(0)] ,
where K(8,) = dg~1(6.) /30, Then, provided the relevant matrices are invertible, we have

T(WY)=T.(y,) (4.13)

where T stands for any one of the test statisti¢gy5 LM (¢), LR(¢) and Dyw (). If é?,* =
g_(ég) , we also have

PC.(Bh.; w.) = PC(Br; ). (4.14)
If @, (8) = w[g ()], the Wald statistic is invariant : W, ) =W ().

Cases where (4.12) holds only have limited interest because they doveotproblems where
D, is the derivative of an objective function, as occurs for example vidhegstimators or (pseudo)
maximum likelihood methods are used :

Dn(6;Zy) = 03“5;99;2”) . (4.15)

In such cases, one would typically have :

wherek (Z,.) may be a function of the Jacobian of the transformalipn= g(Z,). To deal with
such cases, we thus assume that p, and

Dn. (6s; Zn.) = K (8.) Dn (6; Zn) = K[g(6)]' Dn(6; Zp) (4.16)

From (2.3) and (4.16), it then follows that

VNDn. (80:; Zne) = N[O.1. (80.)] (4.17)
wherefo, = g(6p) and
1.(8.) =K (8.)'1[k(8.)]K (6.) =K[G(6)]'I (B)K[F(8)] . (4.18)
Further, )
o (8.5 20) = K[G(O)]'Hn (6: Z0) K [G(6)]+ 3 Dri(6:2) KMige) (@419
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whereDy; (0; Z,),1 =1, ..., p, are the coordinates @, (6; Z,) and

9%6, 9%k

@ gy 90 gy_ 9%
K (6-) 0"'9*0%( ) 09*09;(

i 0.) . (4.20)

By a set of arguments analogous to those used in Dagenais and D86 (it appears that all
the statistics [except the LR-type statistic] are based Wufipand so they are sensitive to a repa-
rameterization, unless some specific estimatariefused. At this level of generality, the following
results can be presented using the following notatiohs ;P are the estimated matrices for a pa-
rameterization ir@ andi.,J.,P, are the estimated matrices for a parameterizatiof,iriThe first
proposition below provides an auxiliary result on the invariance of gdimedC(a) statistics for
the canonical reformulatiog* (6..) = 0, while the following one provides the invariance property
for all the statistics considered and general equivalent reparamétarizand hypothesis reformu-
lations.

Proposition 4.4 C(a) CANONICAL INVARIANCE TO REPARAMETERIZATIONS. Lety*(0,) =
@ [g1(6.)] , and suppose the following conditions hold:

(@ o, =gy,

(b) D (. Zn) =K [Br.] D(B Z0) ,

(¢) o =K'oK, Jo. = K'HK ,

(d) Whe =K Wh(RY)',

wherelo, Jo and W, are defined as i113.19), andK = K (8°,). Then, provided the relevant matrices

are invertible, 0 -0
Pc*(enw W*,Wn*) = PC(Gn’ W,Wn) .

Theorem 4.5 TEST INVARIANCE TO REPARAMETERIZATIONS AND GENERAL EQUIVALENT HY-
POTHESIS REFORMULATIONS Lety, : ©, — © be any continuously differentiable function of
0. € O, such thaty, [g(8)] =0« ¢ (0) =0, let m= p and suppose :
(@) Dn(9(6);Zn.) =K[g(6))'Dn(6; Zn)
0)]=K(g(e)]'T(8)K[g(e)]
(©) J.[9(8)]=K[g(8)]'I(6)K[g(0)],
e

where K(8,) = dg71(8) /d0’.. Then, provided the relevant matrices are invertible, we have

T(WY)=T(y,) (4.21)

where T stands for any one of the test statisti¢g¢ 5 LM (), LR(¢) and Dyw (). If éﬂ* =
g(8r), we also have
~0 ~0
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and, in the case whemg, (8) = ¢ [g1(6)],

W (@) =W (y) .

It is of interest to note here that conditida) and (b) of the latter theorem will be satisfied if
Dn(6; Zn) = £ 511 (6; z) and each individual “score” gets transformed after reparameterization
according to the equation

h(9(6); z.) =K[g(0)'h (6;2) , t=1,,....n, (4.23)

whereDp, (9(0); Zy.) = %z{‘zl h.(9(6); ). Consequently, in such a case, any estimbtéy of
the general form (3.5) will satisfgb) provided the matrix\j (n) remains invariant under reparame-
terizations. This will be the case, in particular, for most HAC estimators ofdima {3.8) as soon
as the bandwidth paramet®y only depends on the sample sizéHowever, this may not hold B,

is data-dependent [as considered in Andrews and Monahan (1992)]

5. Invariant test criteria

Despite the apparent “positive nature” of the invariance results pexbémthe previous section,
the main conclusion is that none of the proposed test statistics is invariameoatjeeparameteri-
zations, especially when the score-type function considered is ddrivadan objective function.
In particular, this problem occurs when the score-type function iseléfirom a (pseudo) likelihood
function or, more generally, from the objective function minimized by an ktvegor.

In this section, we propose two ways of building invariant test statistics fil$iene is based
on modifying the LR-type statistics proposed by Newey and West (198G KoM setups, while
the second one exploits special properties of the linear exponential familgelndo-maximum
likelihood models’

5.1. Modified Newey—West LR-type statistic

Consider the LR-type statistic

DNW(L,U) = I’\[Mn(ég, ro) — Mn(én, ro)}

whereMy(6, o) = Dn (6; Zn)'I5'Dn (6; Zy) , proposed by Newey and West (1987, hereafter NW).
In this statistic,lp is any consistent estimator of the covariance maditfi®,) which is typically

2The reader may note that further insight can be gained on the invagagerties of test statistics by using differen-
tial geometry arguments; for some applications to statistical problem&ates and Watts (1980), Amari (1990), Kass
and Voss (1997), and Marriott and Salmon (2000). Such argumesytsaitow one to propose reparameterizations and
“invariant Wald tests”; see, for example, Bates and Watts (1981), &bnag(1982), Le Cam (1990), Critchley, Marriott
and Salmon (1996), and Larsen and Jupp (2003) in likelihood modslsf Aow, such procedures tend to be quite diffi-
cult to design and implement, and GMM setups have not been considéred.though this is an interesting avenue for
future research, simplicity and generality considerations have led usus ém procedures which do not require adopting
a specific parameterization.
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a function of a “preliminary” estimato®,, of 6 : iy = F(en). The minimized value of the objec-
tive functionMn(8, ) is not invariant to general reparameterizations unless special restsietien
imposed on the covariance matrix estimétor

However, there is a simple way of creating the appropriate invariancecasasthe func-
tion I (0) is a reasonably smooth function 6f Instead of estimating by minimizingMn(8, io),
estimated by minimizing Mn(B, F(G)). For example, such an estimation method was studied by
Hansen, Heaton and Yaron (1996). When the score v&st@nd the parameter vectérhave the
same dimensiofm= p), the unrestricted objective function will typically be z&B(8,; Z,) = 0],

so the statistic reduces Bnw (YY) = nMn(ég, io). Whenm > p, this will typically not be the case.
Suppose now the following conditions hold :

Dn: (§(6) , Zn) = K [3(6)]'Dn(6; Zn) | (5.1)
[, (9(0)) =KI[g(8)]'T(8)K[(6)] - (5.2)

Then, for8, =g(8),

Mn. (62,15 (6.)) = Dn.(d(6).Zn.)T. (G
) 0; Zn) . (5.3)
Consequently, the unrestricted minimal vahig(8; [(8n)) and the restricted oridn(82; 1(8°)) so
obtained will remain unchanged under the new parameterization, and tlespanding) and the
LR-type statisticsi.e. A A

J=nMn(6n; 1(8n)), (5.4)

A~

D(@) = n[Mn(Br; [(87)) —Ma(Bn; ((80)] (5.5)

are invariant to reparameterizations of the type considered in (4.16)8)(4Jhder standard regu-
larity conditions on the convergence Bf (8; Z,) andi (8) asn — « (continuity, uniform conver-
gence), it is easy to see thatand Dyw are asymptotically equivalent (at least under the null hy-
pothesis) and so have the same asympyptigo;) distribution®

5.2. Pseudo-maximum likelihood methods
5.2.1. PML methods

Consider the problem of making inference on the parameter which appeae mean of an en-
dogenouss x 1 random vectoy; conditional to an exogenous random vector

E(t [ %) =f (% 0)=f(0) , V(% [ %) = Qo(x) (5.6)

where f;(0) is a known function and is the parameter of interest. (5.6) provides a non-linear
generalized regression model with unspecified variance. Even if a likelifnction with a finite

3The regularity conditions and a proof of the asymptotic distribution arengiveour working paper [Dufour et al.
(2013)].
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number of parameters is not available for such a semi-parametric nfockah, be estimated through
a pseudo-maximum likelihood technique (PML) which consists in maximizing aechideelihood
as if it were the true undefined likelihood; see Géwiux, Monfort and Trognon (19844 In
particular, it is shown in the latter reference that this pseudo-likelihood balshg to the specific
class of linear exponential distributions adapted for the mean. Theseulisindhave the following
general form:

L(y; 1) = exp[A(u) + B(y) +C(n)y] (5.7)
wherep € R® andC(p) is a row vector of siz&. The vectoru is the mean of if
% + 0£ =0
ou  ou H=5

Irrespective of the true data generating process, a consistentyangdtasically normal estima-
tor of 6 can be obtained by maximizing

ﬁexp{A(ft(e)) +B(yt) +C(fi (8) )y } (5.8)

t=
or equivalently through the following equivalent programme:

ocC

meaxt;{A(ft(e))JrC(ft(Q))yt} with gﬁeruu:O' (5.9)

The class of linear exponential distributions contains most of the classidstisal models, such
as the Gaussian model the Poisson model, the Binomial model, the Gamma modedgatiene
Binomial model, etc. The constraint in the programme (5.9) ensures that pleetakion of the
linear exponential pseudo-distributionfis The pseudo-likelihood equations have an orthogonal

condition form: 0 9t aC
Dn(0) =S =X ——(f(0))(y: — ft(6)) =0. 5.10
n(6) 2,36 0”( 1(0)) (vt — ft(6)) (5.10)
The PML estimator solution of these first order conditions is consistentsymdotically normal
N[0, (J'1713)~1], and we can write:

o-e{()Euel)) ew

o-a{(25) [(Eo)a ()] (5)). e

4For further discussion of such methods, the reader may consult: &ah§amaniego (1981), Goaroux, Monfort
and Trognon (1984), Trognon (1984), Bourlange and Doz (1988), Trognon and {@oomx (1988), Gouéroux and
Monfort (1993), Cepon and Duguet (1997) and Jorgensen (1997).
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These matrices can be estimated by:

f=§§(‘”‘< ) |50 (ke >] (Sk@). 519

A

170
= le s(d) (5.14)
where ot asc
5(8) = (ae (é)> {du (ft(@)))} (y—1(8)). (5.15)

Slnce (ft(G)) andy; — f;(8) are invariant to reparameterizatiorisand J are modified only

df
throughae Further,

wie)=1@e-6). 53— (5a) (55) = (5o )K@EN G0

and

. =K[a(8)]'K[gB)], I =K[a8)]IK[ad)]. (5.17)
The Lagrange, score artl(a)-type pseudo-asymptotic tests are then invariant to a reparameter-
ization, though of course Wald tests will not be generally invariant to hygsishreformulations.
Consequently, this provides a strong argument for using pseudo ingéidg in the linear exponen-
tial family (instead of other types of densities) as a basis for estimating paranoéteonditional
means when the error distribution has unknown type.

The estimation of thd matrix could be obtained through direct second derivative calculus of

the objective function. For example, whgnis univariate(G = 1), we have:

—

n R R N\ n Y . ~\
j :% ‘93(9)%(1‘(9))<‘;3(9)> 1 d&@)g;(ﬂ(@)(gg(@) (vt — f:(0))

The first two terms of this estimator behave after reparameterizati(imm the last term is based

on second derivatives of(6) and so leads to non-invariance problems [see (3.4) and (4.19)].
The two last terms of vanish asymptotically, they can be dropped as in the estimation method
proposed by Gougroux et al. (1984). For the invariance purpose, to discard the last term is the

correct way to proceed.

5.2.2. QGPML methods

Gourieroux et al. (1984) pointed out that some lower efficiency bound can be achieved by a two-
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step estimation procedure, when the functional form of the true conditsmetaind order moment
of y; givenx; is known:
V(%[x) = Qo(x) = h(x, a0) = h(ao).

The method is based on various classical exponential families (neg#tiveral, gamma, normal)
which depend on an additional parametelinked with the second order moment of the pseudo-
distribution. If y and X~ are the expectation and the variance-covariance matrix of this pseudo-
distribution: n = W(u, %), whereW defines for anyu, a one to one relationship betwegrand
2.

The class of linear exponential distributions depending upon the extaanpsern is of the
following form:

1*(y, 4, n) = exp{A(u,n) +B(n,y) +C(u,n)y} -

If we consider the negative binomial pseudo distribuddp,n) = —n In <1+ %) andC(u,n) =

In(u/(n+ p)); if otherwise we use the Gamma pseudo distributiét@u n)=-nin(u) and
C(p,n) = —1. Inthe former casen = ¥(u,0%) = po?/(1—0?) and in the latten = ¥(u, 0?)
u?o?,

With preliminary consistent estimatodis 8 of a, 8 wheref andé are equivariant with respect
to g, computed for example as in Trognon (1984), the QGPML estimatBi®bbtained by solving
a problem of the type

mgxiw(yt,ft<e>,w<ft<é>,gt<a>>>-

The QGPML estimatoB of 6 is strongly consistent and asymptotically normain(8 — 8o) L
N[0, Zo] with

af Lot of ,0f
fo-{&| Shaao 5e |} . o= do— x| Gk oualan) 55 60)].

lp andJp can be consistently estimated by:

I P WL PN " o ST [T
| :ﬁt;s[(e, ,0)8(6,4,0), J= n2 550 [au(ft(e),W(ft(B),gt(a))) 0-.765(9%
where o1/ [aC
§(8.6.8) = 54 | 52 (1(8). W(k(®). (@) | (4~ 1(8))

Since S ((), W(f:(8),0:(d))), andy, — f(6) are invariant to reparameterizationdianda are
equwarlant we face the same favorable case as before:

=K[g(0)) K[g®)], . =K[g(8)) IK[g()],

and the Wald, Lagrange, score pseudo-asymptotic tests are invariargtarameterization. These
quasi-generalized pseudo-asymptotic tests are locally more powerfulitharresponding pure
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pseudo-asymptotic tests under local alternatives [see Trognon {1984)

Furthermore the quasi-generalized LR statistic (QGLR) is invariant prdyithe first-step es-
timators@ andd are equivariant under reparameterization. And as shown in Trodr88#], the
QGLR statistic is asymptotically equivalent to the other pseudo-asymptotic statidic the null
and under local alternatives.

6. Numerical results

In order to illustrate numerically the (non-)invariance problems discudsedeawe consider the
model derived from the following equations:
A A i.i.d.
yi = y+ B + B +w, w RN, 03, t=1,....n, (6.1)

wherexft” = —1)/A,i=12 % >0 with xi(tM = log(xit) for A = 0, and the explanatory
variables; andxy; are fixed. The null hypothesis to be tested is:

Ho: A =1. (6.2)

The log-likelihood associated with this model is:

n
= 31y Br B2 A, o7, (6.3)
IVt; ¥, B1, B2, A, 07) = }ln(zm }In(az) L@t=1..n (6.4)
Yi: Vs P1,P2y A, __2 _2 —zo_zut, =4 ...,N .

It is easy to see that changing the measurement unitg;@ndxy leaves the form of model (6.1)
and the null hypothesis invariant. For example, if b&thandxx are multiplied by a positive
constank, i.e.

Xitx = KXat, Yot = KXot (6.5)

(6.1) can be reexpressed in terms of the scaled variahleandxy.,. as
A A
Yt = y*+Bl>s<Xj(Lt*)+B2*X(2t*)+uT7 (66)
where the power paramet&érremains the same and

2
y*:y_k(A)k_A.ZBiv Bi*:Bik_A7 [ :17 2. (67)
i=

On interpreting model (6.1) as a pseudo-model and (6.3) as a pseulitoalidde we will exam-
ine the effect of rescaling on GMM-based and pseudo-likelihood testsnant equations can be
derived from the above model by differentiating the log-likelihood with eespo model parameters
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Table 1. Test statistics fddg : A = 1 for different measurement units
5 moment models

_ Two-step GMM B CUP-GMM Pseudo ML
k D Wald | Score | C(a) D Wald | Score| C(a) LR Mod. score
0.2 | 0.001 | 44.750| 84.810 | 33.972| 5.771| 44.750| 5.771| 5.066 | 66.408| 31.060
0.4 | 0.000 | 44.746| 47.692 | 16.726| 5.771| 44.746| 5.771| 0.922 | 66.408| 31.060
0.6 | 0.001 | 44.745| 42.983 | 14.106| 5.771| 44.745| 5.771| 4.482 | 66.408| 31.060
0.8 | 0.010 | 44.744| 39.161 | 12.369| 5.771| 44.744| 5.771| 5.282 | 66.408| 31.060
1.0 | 0.056 | 44.743| 35.676 | 10.593| 5.771| 44.743| 5.771 | 5.3838 | 66.408 | 31.060
3.0 | 34.629| 44.743| 118.876| 42.124| 5.771| 44.743| 5.771| 0.6720| 66.408| 31.060
50 | 1.641 | 44.743| 62.195 | 34.746| 5.771| 44.743| 5.771| 2.5545| 66.408| 31.060
7.0 | 0.282 | 44.742| 61.766 | 34.953| 5.771 | 44.742| 5.771 | 3.9336| 66.408| 31.060
10.0| 0.068 | 44.739| 61.147 | 34.465| 5.771| 44.739| 5.771 | 4.5010| 66.408 | 31.060
Table 2. Test statistics fdig : A = 1 for different measurement units
6 moment models
B Two-step GMM B CUP-GMM
k D Wald Score| C(a) D Wald | Score| C(a)
0.2 0.016 | 416.546| 106.734| 54.462| 19.480| 359.380| 11.107| 3.189
0.4 0.036 | 221.829| 108.142| 54.852| 19.480| 83.743| 16.296| 7.318
0.6 0.248 | 213.918| 107.764| 52.818| 19.480| 40.481| 18.637| 7.063
0.8 1.068 | 178.757| 106.053| 47.539| 19.480| 34.101| 17.678| 0.661
1.0 | 3.562| 139.364| 103.364| 37.915| 19.480| 35.580| 17.769| 5.215
3.0 | 47.490| 46.214| 110.751| 7.960| 19.480| 45.146| 15.250| 4.650
5.0 1.651| 129.698| 48.704| 6.518| 19.480| 59.667| 13.367| 4.611
7.0 1.511| 384.944| 49.719| 9.978| 19.480| 118.911| 13.937| 5.639
10.0| 2.031| 905.870| 50.264| 10.747| 19.480| 406.974| 14.162| 6.136
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and equating the expectation to zero. This yields following five moment conslition

E[Z ]—o E Zutxlt]—o E[Z“‘Xﬂ
!ZA (ZB X} Inxie — ])] =0, E[t;(ut o )] —0. (6.9)

These equations provide an exactly identified system of equations. &osgstem with 6 moment
equations (hence overidentified), we add the equation:

n
E ZlutxltXZt
t=

To get data, we considered the sample 8ize200 and generateg according to equation (6.1) with
the parameter valugs= 10, 8, = 1.0, B, = 1.0, A = —1.0, 0% = 0.85. The values of the regressors
X1t andxy were selected by transforming the values used in Dagenais and Dug®uir)f1

Numerical values of the GMM-based test statistics for a number of ressaigreported in
Table 1 for the 5 moment system (6.8) - (6.9) and in Table 2 for the 6 momerhsy6.8) - (6.10).
Results for the pseudo-likelihood tests appear in Table 1. Graphs of thimvariant test statistics
are also presented in figures 1 - 3. In these calculations, the first-stemates of the two-step
GMM tests is obtained by minimizinigl, (6, W) in (2.5) withW, = I, (equal weights), while the
second step uses the weight matrix defined in (3.4). No correction fiat serrelation is applied
(although this could also be studied).

These results confirm the theoretical expectations of the theory prdsaritee previous sec-
tions. Namely, the GMM-based test statistitg {/), Wald, scoreC(a)] are not invariant to mea-
surement unit changes and, indeed, can change substantially (ewth thb null and the alterna-
tive hypotheses remain the same under the rescaling considered heng)vayiance is especially
strong for the overidentified system (6 equations). In contrasD{lge and score tests based on the
continuously updated GMM criterion are invariant. The same holds for tharidRadjusted score
criteria based on linear exponential pseudo likelihoods.

—0, (6.8)

~0. (6.10)

7. Empirical illustration: linear stochastic discount factor models

In the context of linear stochastic discount factor model, it is shown tlategdiures based on non-
invariant test statistics could lead to drastically different results dependitige form of identifying
restrictions imposed. While an in-depth analysis of this problem is provideBlubgside (2010)
from the perspective of model misspecification and identification, we aimeid lgfht on this issue
from invariance considerations. The linear stochastic discount factdelni® described by the

5The numerical values ofy;, xi: andy; used are available from the authors upon request. It is important to rate th
this isnot a simulation exercisaimed at studying the statistical properties of the tests, but only an illustrdtitre o
numerical propertie®f the test statistics considered.
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following two equations:
E[mR] =0, (7.1)
m =a-— f{b, (7.2)

wherem is the stochastic discount factor (SDH);is ak x 1 vector of factorsfRf is the excess
return (the difference between the gross asset return and the rskafed;a andb are scalar and
p x 1 vector of unknown parameters, respectively] is an expectation operator conditional on
information up to timea — 1. The equations (7.1) and (7.2) can equivalently be written as

E[(a— f{b)R] =0. (7.3)

Since the unknowns and b are not identified individually, we consider the following two
normalizations [see Burnside (2010), Cochrane (2005)]:

Normalization1: E [% Rf} =0
- _ m
Normalization2: E [Rﬁ] =0.

By applying the normalizations to (7.3), we have

E [(L— {8)RY =0, E[(L— (fi—p)0.)RY =0, (7.4

wherepu; = E[f{], 8 = b/aand8, = b/E[m]. The implied two sets of sample moments are:
f

1cn / 1cn 1
[ a2 (RE—Rf0) ) _ ( A Y (RE—RE(fe—py)'0.) )

It is clear that the sample moments satisfy
Dn. (9(8) ,Zn.) = K[3(6)]' Dn(6; Zy)

with K[g(6)] = diag{a/E[m],1}; one set of moments can be derived from the other by affine
transformation off;. Letl,(6.) be the HAC estimator of(6.) with Bartlett kernel and (6) be
defined similarly. Then we have

[(9(6)) =K[g(6)]'T(8)K[g(6)].
Therefore, by virtue of equation (5.3), CUP-GMM objective functiod #re statistiD are invari-
ant to affine transformation df i.e., they are not affected by the form of normalization employed.
The model is estimated using the observed returns on 5 stocks:"WMK”,”JUGRB”, “MAT”

and “ABAX” and the three factors Rm-Rf, SMB and HML from the Famasfetedata set over the
period from January 5th, 1993 - March 16th, 1993. All calculationsvearried out in R Version
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Table 3.J statistic for the validity of (7.4) under different identifying restrictions. Thealues are
given in parantheses.

Two-step GMM CUP-GMM
Normalization 1 | Normalization 2 | Normalization 1 | Normalization 2
Qs Bartlett | QS Bartlett | QS Bartlett | QS Bartlett

0.218 | 0.106 | 17.214| 5.670 | 1.235 | 1.774 | 1.759 | 1.866
(0.897) | (0.949) | (0.000) | (0.059) | (0.539) | (0.412) | (0.415)| (0.393)

3.0.2 (R Development Core Team (2013)) using the packmge developed by Pierre Chauss
[Chausé (2010)]. The data we use are readily available in Fienance data set contained in
gmm. The estimation methods are two-step GMM and CUP-GMM with covariance matiix e
mated with Bartlett and Quadratic Spectral (QS) kernels. Table 3 reportalines ofJ statistic
for testing the validity of the restrictions (7.4). For the two-step GMM, it is cthat the values of
test statistics differ greatly across the normalizations, and are sensitieedbdlfce of kernels. Fur-
thermore, the test rejects the null of correct specification under NorrtiahZawith QS kernel, but
the conclusion is reversed under Normalization 1. In the case of CUP-@iitivBartlett kernel,
though there is a small incongruity in the values of test statistics (possibly daredptimization
error), the model is not rejected under both normalizations. The differbatween test statistics
under the CUP-GMM with QS kernel may be attributed to the non-invarianteaibjective func-
tion with QS kernel. The main message of this exercise is that procedues tanon-invariant
test statistics can be quite sensitive to the identifying restrictions employed gniesudt in con-
flicting conclusions. For a thorough discussion on the effect of norntalimon estimation and
inferences, we refer the reader to Hamilton, Waggoner and Zha (2007)

8. Conclusion

In this paper, we have studied the invariance properties of hypothesismsicable in the context
of incompletely specified models, such as models formulated in terms of estimatictgphs and
moment conditions, which are usually estimated by GMM procedures, or medgisated by
pseudo-likelihood antf-estimation methods. The test statistics examined include Wald-type, LR-
type, LM-type, score-type, and(a)-type criteria. We found that all these procedures aw@t
generally invarianto (possibly nonlinear) hypothesis reformulations and reparameterizatiocts
as those induced by measurement unit changes. This means that testingivetest hypotheses
in the context of equivalent models may lead to completely different infereriéor example, this
may occur after an apparently innocuous rescaling of some model vatiable

In view of avoiding such undesirable properties, we studied restricticaatscdn be imposed
on the objective functions used for pseudo-likelihood (or M-estimatiomyedsas the structure of
the test criteria used with estimating functions and GMM procedures to obtairnany tests. In
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particular, we showed that using linear exponential pseudo-likelihoactiitns allows one to ob-
tain invariant score-type ard(a)—type test criteria, while in the context of estimating function
(or GMM) procedures it is possible to modify a LR-type statistic proposetlé&ywey and West
(1987) to obtain a test statistic that is invariant to general reparameterzafitye invariance as-
sociated with linear exponential pseudo-likelihood functions is interpret@dstrong argument for
using such pseudo-likelihood functions in empirical work. Furthermoeel Rrtype statistic is the
one associated with using continuously updated GMM estimators based mpagiely restricted
weight matrices. Of course, this provides an extra argument for sudkd @stimators.
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