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Résumé/abstract  
 

This paper proposes a factor augmented autoregressive distributed lag (FADL) framework 

for analyzing the dynamic effects of common and idiosyncratic shocks. We first estimate the 

common shocks from a large panel of data with a strong factor structure. Impulse responses 

are then obtained from an autoregression, augmented with a distributed lag of the estimated 

common shocks. The approach has three distinctive features. First, identification restrictions, 

especially those based on recursive or block recursive ordering, are very easy to impose. 

Second, the dynamic response to the common shocks can be constructed for variables not 

necessarily in the panel. Third, the restrictions imposed by the factor model can be tested. 

The relation to other identification schemes used in the FAVAR literature is discussed. The 

methodology is used to study the effects of monetary policy and news shocks. 
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1 Introduction

This paper proposes a new approach for analyzing the dynamic effects of q common shocks such as

due to monetary policy and technology on q or more observables. We assume that a large panel of

data XALL = (X,XOTH) is available and use the sub-panel X that is likely to have a strong factor

structure to estimate the common shocks. Identification is based on restrictions on a q dimensional

subset of X or on q block specific dynamic shocks. The impulse response coefficients are obtained

from an autoregression in each variable of interest augmented with current and lagged values of

the identified common shocks. Observed factors can coexist with latent factors. We refer to this

approach as Factor Augmented Autoregressive Distributed Lag (FADL).

An important feature of the FADL is that it estimates the impulse responses using minimal

restrictions from the factor model. The approach has several advantages. First, while X is large in

dimension, identification is based on a subset of variables whose dimension is the number of common

shocks. This reduces the impact of invalid restrictions on variables that are not of direct interest.

Second, the impulse responses are the coefficients estimated from a regression with common shocks

as predictors. Additional restrictions are easy to impose, and for many problems the impulse

responses can be estimated on an equation by equation basis. Third, the analysis only requires

a strong factor structure to hold in X and is less likely to be affected by the possibility of weak

factors in XOTH .

The proposed FADL methodology lets the data speak whenever possible and is in the spirit of

vector-autoregressions (VAR) proposed by Sims (1980). The FADL also shares some similarities

with the Factor Augmented Vector Autoregressions (FAVAR) considered in Bernanke and Boivin

(2003). Their FAVAR expands the econometrician’s information set without significantly increasing

the dimension of the system. Our FADL further simplifies the analysis by imposing restrictions only

on the variables of interest. Recursive and non-recursive restrictions can be easily implemented.

The FADL is derived from a structural dynamic factor model which has a restricted FAVAR

as its reduced form. A factor model imposes specific assumptions on the covariance structure of

the data. Even though many variables are available for analysis, a factor structure may not be

appropriate for every series. As noted in Boivin and Ng (2006), more data may not be beneficial for

factor analysis if the additional data are noisy and/or do not satisfy the restrictions of the factor

model. We treat X like a training sample. Using it to estimate the common shocks enables us to

validate the factor structure in XOTH , the series not in X.

The FADL approach stands in contrast to structural FAVARs that impose all restrictions of a

dynamic factor model in estimation, as Forni, Giannone, Lippi, and Reichlin (2009). The FADL

estimates will necessarily be less efficient if the restrictions are correct, but are more robust when

the restrictions do not hold universally. As in Stock and Watson (2005), our FADL also permits

implications of the factor model to be tested. However, we go one-step further by letting the data

determine the Wold representation instead of inverting a large FAVAR.

The paper proceeds as follows. Section 2 first sets up the problem of identifying the effects

of common shocks from the perspective of a dynamic factor model. It then presents the FADL

framework without observed factors. Estimation and identification of a FADL is discussed in Section
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3. Relation of FADL to alternative structural dynamic factor analysis is discussed in Section 4, and

FADL is extended to allow for observed factors. Simulations are presented in Section 5. Section

6 considers the identification of monetary and news shocks and the estimation of their effects on

economic activity. Both examples highlight the main features of FADL: the ability to perform

impulse responses analysis and to test the validity of the factor structure of variables not used in

estimation or identification of the common shocks.

2 Dynamic Factor Models and the FADL Framework

Let N be the number of cross-section units and T be the number of time series observations where

N and T are both large. We observe data XALL = (X, XOTH) which are stationary or have been

transformed to be covariance stationary. It is assumed that Xt = (X1t, . . . , XNt)
′ has a (strong)

factor representation and can be decomposed into a common and an idiosyncratic component:

Xt = λ̃(L)ft + uXt (1)

where ft = (f1t, . . . , fqt)
′ is a vector of q common factors and λ̃(L) = λ̃0 + λ̃1L + . . . λ̃sL

s is a

polynomial matrix of factor loadings in which the N × q matrix λ̃j = (λ̃j1 . . . , λ̃jN )′ quantifies

the effect of the common factors at lag j on Xt. In particular, the i-th element of λ̃(L) consists

of λ̃i(L) = (λ̃i1(L), . . . , λ̃iq(L)), λ̃ik(L) =
∑pi,k

j=0 λ̃i,k,jL
j , where pi,k is the finite lag order of the

k−th factor loadings polynomial of variable i. The series-specific errors uXt = (uX1t, . . . , uXNt)
′

are mutually uncorrelated but can be serially correlated. We assume

uXt = D(L)uX,t−1 + vXt (2)

where D(L) is a finite-order N -dimensional matrix poynomial and vXt is a vector white noise

process. The q latent dynamic factors are assumed to be a vector autoregressive process of order

h. Without loss of generality, we assume h = 1 and thus

ft = Γ1ft−1 + Γ0vft (3)

where the characteristic roots of Iq − Γ1L are strictly less than one. The q × 1 vector vft consists

of structural common shocks (such as monetary policy or technology). These structural shocks can

affect several dynamic factors simultaneously. Hence, the q × q matrix Γ0 need not be an identity.

By assumption, E(vXitvXjt) = 0 and E(vXitvfkt) = 0 for all i 6= j and for all i = 1, . . . N and

k = 1, . . . q.

Assuming that I−D(L)L is invertible, the vector-moving average representation of Xt in terms

of the structural common and idiosyncratic shocks is

Xt = Ψf (L)vft + ΨX(L)vXt.

The structural impulse response coefficients ΨX
j and Ψf

j are defined from

ΨX(L) =
∞∑
j=0

ΨX
j L

j = (I −D(L)L)−1

Ψf (L) =

∞∑
j=0

Ψf
jL

j = λ̃(L)(I − Γ1L)−1Γ0.
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For each j ≥ 0, Ψf
j is a N×q matrix summarizing the effect of a unit increase in vft after j periods.

We use Ψf
j,i1:i2,k1:k2 to denote the submatrix in the i1 to i2 rows and k1 to k2 columns of Ψf

j . When

i1 = i2 = i and k1 = k2 = k, we use ψfj,i,k to denote the effect of shock k in period t on series i in

period t+ j.

The objective of the exercise is to uncover the dynamic effects (or the impulse response) of the

structural common shocks vft on variables of interest. By using X1t, . . . , XNt for factor analysis,

the econometrician’s information set is of dimension N . Forni, Giannone, Lippi, and Reichlin

(2009) argue that non-fundamentalness is generic of small scale models but cannot arise in a large

dimensional dynamic factor model. The reason is that Ψf (z) is a rectangular rather than a square

matrix and its rank is less than q for some z only if all q × q sub-matrices of Ψf (z) are singular,

which is highly unlikely. Assuming that N is large ensures that the common shocks are fundamental

for X.

However, even if N is large, nothing distinguishes one common shock from another. In a VAR

analysis with q endogenous variables and q shocks, q(q − 1)/2 restrictions will be necessary. A

popular approach is to impose contemporaneous exclusion restrictions such that a rank condition is

satisfied, see, eg. Deistler (1976), Rubio-Ramı́rez, Waggoner, and Zha (2010). If the identification

restrictions imply a recursive ordering, then the parameters can be identified sequentially and

estimation can proceed on an equation by equation basis.

While ΨX
0 = IN in a dynamic factor model, the contemporaneous response of Xt to common

shocks vft is given by

Ψf
0 = λ̃0Γ0 =



λ̃0,1,1 λ̃0,1,2 . . . λ̃0,1,q
...

...

λ̃0,q,1 λ̃0,q,2 . . . λ̃0,q,q
...

...

λ̃0,N,1 λ̃0,N,2 . . . λ̃0,N,q



Γ0,1,1 . . . Γ0,1,q
...

Γ0,q,1 . . . Γ0,q,q

 .

The (i, k) entry of λ̃0 is the contemporaneous effect of factor k on series i, and the (k, j) entry of Γ0

is the effect of the j-th common shock on factor k. In general, Ψf
0 will not be an identity matrix.

Two additional problems make the identification problem non-standard. First, while having

more total shocks than endogenous variables should facilitate identification, the common shocks

also restrict the co-movements across series. Imposing constraints on an isolated number of series

is actually quite difficult within the factor framework. Zero restrictions on the entries of λ0 or Γ0

alone are not usually enough to ensure that a particular entry of Ψf
0 takes on the desired value

(often zero). Second, the dynamic factors are themselves latent. Thus, not only do we need to

identify the effects of vf , we also need to identify vf .

Our analysis is based on the following assumptions.

Assumption 1: E(vft) = 0, E(vftv
′
ft) = Iq.

3



Assumption 2: D(L) is a diagonal matrix with δi(L), a finite px,i-degree lag polynomial, in the

i-th diagonal, i.e.

D(L) =

δ1(L) 0 . . . 0
...

...
...

0 0 . . . δN (L)

 ,

Assumption 3: For some j, a q × q matrix of Ψf
j is full rank.

Assumption 1 is a normalization restriction as we cannot separate the size of the common shocks

from their impact effects. Assumption 2 is a form of exclusion restriction. We assume univariate

autoregressive dynamics for idiosyncratic errors:

uXit = δi(L)uXit−1 + vXit.

This implies that dynamic correlations between any two series are due entirely to the common

factors, which is the defining feature of a dynamic factor model. Diagonality of D(L) in turn

allows Xit to be characterized by an autoregressive distributed lag model with serially uncorrelated

idiosyncratic errors:

Xit = δi(L)Xit−1 + λi(L)ft + vXit, (4)

where λi(L) = (1 − δi(L))λ̃i(L). For simplicity, we assume λi(L) is of order s for all i.1 A

representation that is more useful for impulse response analysis is an autoregressive distributed lag

in the primitive shocks vft:

Xit = δi(L)Xit−1 + ψfi (L)vft + vXit (5)

where

ψfi (L) = (1− δi(L))λ̃i(L)(I − Γ1L)−1Γ0.

We will henceforth refer to (5) as the FADL representation of Xit. Note that (1 − δi(L))−1ψfi (L)

is precisely the i-th row of Ψf (L).2

The dynamic effects of the common shocks vft on Xit are defined by the coefficients ψfi (L).

If vf were observed and N = q, equation (5) defines a dynamic simultaneous equations system in

which identification can be achieved by excluding some vf or its lags from certain equations. For

example, contemporaneous restrictions can be imposed so that the q× q matrix Ψf
0 has rank q. As

1In general, λi(L) is a lag polynomial of the maximum order maxk∈1,...,q(pi,k) times pi,x.
2In Dufour and Stevanovic (2013) the authors argue that factors’ dynamics obey, in general, a VARMA process.

The FADL representation still holds. Assume an identified VARMA(1,1) process for factors:

ft = Γ1ft−1 + Θ1Γ0vft−1 + Γ0vft.

Then, the FADL representation of Xit is the same as in (5) except that

ψf
i (L) = (1 − δi(L))λ̃i(L)(I − Γ1L)−1(I + Θ1)Γ0.

4



our system is tall with N ≥ q, Assumption 3 requires that a q × q submatrix of Ψf
j is full rank. If

all restrictions are imposed on Ψf
0 , Assumption 3 will hold if the top q × q submatrix of Ψf

0 has

rank q. However, long run and sign restrictions are also permitted.

Assumptions 1 to 3 are fairly standard. But our factors are also latent and we can only identify

the space spanned by the factors and not the factors themselves. To make the procedure operational,

we need to replace vft by estimates v̂ft which have the same properties as Assumption 1. These

identification conditions will be further developed below.

3 Estimation and Identification

If there are q common shocks, we will need at least q series for identification. Without loss of

generality, let Yt be the first q series in Xt. Since each yt ⊂ Yt admits a dynamic factor structure,

it holds that

yt = α∗yy(L)yt−1 + α∗yf (L)vft + v∗yt, (6)

where α∗yy(L) and α∗yf (L) are the autoregressive and distributed lag coefficients of the non feasible

regression since the common shocks vft are, in general, not observable. Our impulse response

analysis is rather based on least squares estimation of the FADL

yt = αyy(L)yt−1 + αyf (L)v̂ft + vyt (7)

where a prior restrictions are be imposed on αyf (L) for identification. We now explain how vft is

estimated and how restrictions are imposed on the FADL.

Let Λ be the N × r matrix of loadings, Ft be a r = q(s+ 1)× 1 vector of static factors, where

Λ =


Λ1

Λ2
...

ΛN

 , Ft =


ft
ft−1

...
ft−s

 , ΦF =


Γ1 Γ2 . . . Γs
Iq 0 . 0 . 0
0 Iq 0 . 0
. 0 . . 0
0 0 . Iq . 0

 Λi =
(
λi0 λi1 . . . λis

)
.

Note that we have assumed a VAR(1) process for dynamic factors. Despite it implies a particular

structure for Ft and ΨF , there is no loss of generality.3 The starting point is the static factor

representation of the pre-whitened data, xit = (1− δi(L)L)Xit:

xit = ΛiFt + vXit (8)

Ft = ΦFFt−1 + εFt (9)

εFt = Gεft. (10)

3Bai and Ng (2007) show that the vector of static factors, Ft, is of dimension r = q(s+ 1) × 1 and follows a VAR
of order depending on h and s. For instance, if ft follows a finite-order VAR(h), then Ft = (f ′t , f

′
t−1, . . . , f

′
t−max(h,s))

′

follows a VAR with

ΦF =


Γ1 Γ2 . . . Γmax(h,s)+1

Iq 0 . 0 . 0
0 Iq 0 . 0
. 0 . . 0
0 0 . Iq . 0


where Γh+1 = . . . = Γmax(h,s)+1 = 0.
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The εFt are the reduced form errors of Ft and are themselves linear combinations of the structural

shocks vft and εft = Γ0vft is the vector of reduced form common shocks, see (3). The r× q matrix

G maps the structural dynamic shocks to the reduced form static shocks. Since Xt is assumed to

have a strong factor structure, Λ′Λ/N → Λ > 0 as N → ∞, and the N × N matrix 1
T

∑T
t=1 xtx

′
t

has r eigenvalues that diverge as N,T → ∞ while the largest eigenvalue of the N ×N covariance

matrix of vXt is bounded.

From vXit = xit − ΛiFt = xit − Λi(ΦFFt−1 + εFt), define

εXit = xit − ΛiΦFFt−1

= ΛiεFt + vXit. (11)

As noted in Stock and Watson (2005), the rank of the r × 1 vector εFt is only q, since Ft is

generated by q common shocks. In other words, εXit itself has a factor structure with common

factors εft. But εft are themselves linear combinations of vft. Let

vft = B̃εft,

where in principle B̃ = Γ−1
0 (if Γ−1

0 exists). The q × q matrix B̃ maps the reduced form dynamic

shocks to the structural dynamic shocks. The objective is to identify vft and to trace out its effects

on the variables of interest. If there are q common shocks, q(q − 1)/2 restrictions are necessary to

identify vft via B̃.

Estimation proceeds in five steps.

Step E1: Estimate Ft from the full panel of data Xt by iterative principal components (IPC).

(i) Initialize δi(L) using estimates from a univariate AR(px,i) regression in Xit. Let D(L) be a

diagonal matrix with δi(L) on the i-th diagonal.

(ii) Iterate until convergence

min
D(L),Λ,F

SSR =
T∑
t=1

(
(I −D(L)L)Xt − ΛFt

)′(
(I −D(L)L)Xt − ΛFt

)
.

(a) Let F̂t be the first k principal components of xx′ using the normalization that F ′F/T =

Ik, where x is the T × N matrix of data, F = (F1, F2, . . . , FT )′ and k is the assumed

number of static factors.

(b) Estimate D(L) and Λ by regressing Xit on F̂t and lags of Xit.

The method of principal components (PC) estimates k factors as the eigenvectors corresponding

to the k largest eigenvalues of XX ′/(NT ). Under the assumption of strong factors, Bai and Ng

(2006) show that the estimates are consistent for the space spanned by the true factors in the

sense that 1
T

∑T
t=1

∥∥∥F̂t −HFt∥∥∥2
= Op(min(N,T )), where H is a k × r matrix of rank r. However,

the idiosyncratic errors may not be white noise. Stock and Watson (2005) suggest using IPC to

iteratively update δi(L), which is then used to define xit. The static factors form the common

component of xit.
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Step E2: Estimating the space spanned by vft Estimate a VAR in F̂t to obtain Φ̂F and

ε̂Ft and let ε̂Xit = xit − Λ̂′iΦ̂F F̂t−1, where Λ̂ and F̂t−1, Φ̂F are obtained from Step (E1). Amengual

and Watson (2007) show that the q principal components of ε̂Xt can precisely estimate the space

spanned by εft = Γ0vft. An alternative is to proceed directly from the factors’ VAR residuals ε̂Ft.

Bai and Ng (2007) show that q eigenvectors of E(ε̂Ftε̂
′
Ft) consistently estimate the space spanned

by εft, hence vft. In particular, 1
T

∑T
t=1 ‖ε̂ft − JNT εft‖ = Op(C

−1
NT ), where JNT is a q× q full rank

matrix and CNT = min(
√
N,
√
T ).

Step E3: Identification of vft: The columns of common shocks ε̂ft are not, in general, inter-

pretable. We seek a matrix B such that

v̂ft = B ε̂ft, (12)

and v̂ft is a vector of mutually uncorrelated structural common shocks. The rotation matrix B

differs from B̃ because ε̂ft consistently estimates the space spanned by εft, but not each columns

separately. We consider two approaches. The first condition (abbreviated as RO) is lower trian-

gularity of a q × q sub-matrix so that the shocks can be identified recursively from q equations.

The second condition (abbreviated as BO) requires organizing the data into blocks using a priori

information so that the factors estimated from each block can be given meaningful interpretation.

Assumption: Recursive Ordering (RO) Method (RO) is based on an assumed causal struc-

ture in short or in the long run. Just like a VAR, this would require knowledge of which of the q

variables to order recursively in Yt. For j = 1 : q consider estimating the regression:

ytj = ayy,j(L)yt−1,j +

q∑
k=1

ayf,j,k(L)ε̂fkt + vyt,j (13)

where ε̂ft are the q principal components of the N residuals êXt or q eigenvectors of E(ε̂Ftε̂
′
Ft). Re-

mark that we specify different autoregressive and distributed lag coefficients from FADL regression

(7) since it contains ε̂ft and not v̂ft. The short run zero restrictions can be imposed as follows:

i Let Âf0 be the estimated contemporaneous response to the q reduced-form shocks ε̂ft:

Âf0 =

âyf,0,1,1 âyf,0,1,2 . . . âyf,0,1,q
...

...
...

âyf,0,q,1 âyf,0,q,2 . . . âyf,0,q,q

 .

ii Define the q × q matrix B = [chol(Âf0Â
′
f0)]−1Âf0. Now let

v̂ft = Bε̂ft

α̂yf,j = âyf,j(L)B−1 j = 1, . . . , q.

7



The long run zero restrictions are imposed through similar steps. For notation purposes, let

ayy(L) = diag[ayy,j(L)], for j = 1, . . . , q, be the diagonal matrix polynomial of the autoregressive

terms in FADL representation (13), and

ayf (L) =

ayf,1,1(L) ayf,1,2(L) . . . ayf,1,q(L)
...

...
...

ayf,q,1(L) ayf,q,2(L) . . . ayf,q,q(L)


be the matrix polynomial of the distributed lag coefficients.

i. Let Âf1 be the estimated long run response to the q unorthogonalized shocks ε̂ft:

Âf1 = (I − âyy(1))−1ayf (1).

ii. Define the q × q matrix B = [chol(Âf1Â
′
f1)]−1Âf1. Now let

v̂ft = Bε̂ft

α̂yf,j = âyf,j(L)B−1.

By construction, v̂ft is orthonormal. The method achieves exact identification by using the

causal ordering of the q variables selected for analysis. Hence, the identified impact (long-run)

matrix on q series in yt is lower triangular.

Imposing a causal structure through the ordering of variables is the most common way to

achieve identification of FAVAR. Stock and Watson (2005) also use Assumption RO to identify the

primitive shocks. Their implementation differs from ours in that we apply Choleski decomposition

to the FADL estimates of αyf (0) and hence we do not impose all the restrictions of the factor

model. In contrast, Stock and Watson (2005) impose restrictions implied by the FAVAR in Xt and

Ft. The results are likely to be more sensitive to the choice of Xt.

Assumption Block Ordering (BO) Method (BO) is useful when the data can be organized

into blocks. Let X = (X1, X2, . . . Xq) be data organized into q blocks. To see how data blocks

facilitate identification, observe that the factor estimates ε̂0
ft are linear combinations of ε̂Xt. Let

ε̂0
f = ε̂Xζ

0 be the T × q matrix of factor estimates where for each t,

ε̂0
ft =


ζ0

11 ζ0
12 . . . . . . ζ0

1N

ζ0
21 ζ0

22 . . . . . . ζ0
2N

...
...

...
...

...
ζ0
q1 ζ0

q2 . . . . . . ζ0
qN



ε̂X1t

ε̂X2t
...

ε̂XNt

 . (14)

Identification requires a priori information on the ζ.

i. For b = 1, . . . q, let ε̂bf be the matrix of eigenvector corresponding to the largest eigenvalues

of the nb × nb matrix ε̂b′X ε̂
b
X .

ii. Let B be the Choleski decomposition of the q× q sample covariance of ε̂ft. Then v̂ft = Bε̂ft.
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The identification strategy can be understood as follows. From (11), we see that εXt =(
ε1′
Xt ε2′

Xt . . . εq′Xt
)′

have εft as common factors. Since the factors are pervasive by definition,

the factors are also common to all εbXt for arbitrary b. Thus for each b = 1, . . . q, consider a factor

model for εbXit = Λbiε
b
ft + vbXit. If εbXit were observed, the factors for block b can be estimated by

principal components which are linear combinations of series in εbXt. We do not observe εbXt, but

we have ε̂Xt = xt− Λ̂Φ̂F F̂t−1 from Step (E2). For example, if X1 is a T ×N1 panel of employment

data, the first principal component of ε̂1′
X ε̂

1
X is a labor market factor ε̂f1t, and if X2 is a panel of

price data, ε̂f2t is a price factor. Collecting the factors estimating from all blocks into ε̂ft, we have

ε̂ft =


ζ1

1,1:N1
0 0 . . . 0 0

0 ζ2
1,1:N2

0 . . . 0 0
... 0

...
...

...
0 0 0 . . . 0 ζq1,1:Nq



ε̂1
Xt

ε̂2
Xt
...
ε̂qXt

 (15)

Obviously, the factors are defined by assuming a structured covariance relation in the observables.

The appeal is that we can now associate the q factors with the block of variables from which

they are estimated. However, these factors can still be correlated across blocks. To orthogonalize

them, step (ii) performs q regressions beginning with v̂f1 = ε̂1
f . For m = 2, . . . q, v̂fb = Mbε̂

b
f

are the residuals from projecting ε̂bf onto the space orthogonal to v̂f1, . . . , v̂f,b−1, and Mb is the

corresponding projection matrix.

Bernanke, Boivin, and Eliasz (2005) treat the interest rate as an observed factor, organize the

macro variables into a fast and a slow block, and estimate the one factor from the slow variables.

Their identification is based on a Choleski decomposition of the residuals in the slow variables and

the observed factor. Their implementation is specific to the question under investigation while our

methodology is general. Our identification algorithm is generic, provided blocks of variables with

meaningful interpretation can be defined.4

In conventional VAR models, the structural impulse responses are obtained by rotating the

reduced form impulse response matrix by a matrix, say, B. The primitive shocks are then obtained

by rotating the reduced form errors with the inverse of the same matrix. In our setup, identification

of structural common shocks precedes estimation of the impulse responses. This allows us to impose

additional economic restrictions on the impulse response functions without simultaneously affecting

the structural shocks. We only presented Wold causal identification structures. However, medium

run (à la Barsky and Sims (2011)) and sign restrictions can be imposed.

Step E4: Constructing Impulse Response Functions: Given identified v̂ft from the previous

step, estimate a univariate FADL by OLS:

yt = αyy(L)yt−1 + αyf (L)v̂ft + vyt (16)

where αyy(L) is a polynomial of order py, and αyf is of order pf . These polynomial orders can be

jointly estimated by Akaike or Bayesian information criteria. The estimated responses of yt to a

4Moench and Ng (2011) construct regional factors from data organized geographically. Ludvigson and Ng (2009)
study the relative importance of the factor loadings and find that factor one loads heavily on real activity series,
factor two on money and credit variables, while factor three loads on price variables.
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unit increase in the common shocks v̂ft and idiosyncratic shocks vyt are defined by

ψ̂fy (L) =
α̂yf (L)

1− α̂yy(L)L
ψ̂yy(L) =

1

1− α̂yy(L)L
.

Since α̂yy(L) is a scalar rational polynomial, the impulse responses are easy to compute using

the filter command in matlab. The least squares estimates [α̂yy(L), α̂yf (L)] converge to the

least squares estimates from the infeasible regression (6), [α̂∗yy(L), α̂∗yf (L)]. As shown in Step E2,

ε̂ft consistently estimates the space spanned by εft, thus regression augmented with ε̂ft can be

treated as though εft is observed, see Bai and Ng (2006). However, that regression would produce

unorthogonalized impulse responses and a priori restrictions in form of B = Γ−1
0 J−1

NT are needed to

obtain ψ̂fy (L). The formal proof is in the Appendix.

Note that by Assumption 1, the standard deviation of all common shocks are normalized to

unity. The response to a unit shock is thus the same as the response to a standard deviation shock.

Note that given interpretation of v̂ft identified from Step E3, additional economic restrictions on

the impulse responses can be directly imposed on αyf for any variable yt being in Yt, Xt or XOTH
t .

For example, suppose we have a strong (a priori) reason that a particular (sectoral) total factor

productivity (TFP) series does not react to a technology news shock even at one period lag. This

implies restricting αyf,0,k = αyf,1,k = 0 where k reflects the news shock in v̂ft. Hence, it restricts

the response of that particular variable without affecting the identification of common shocks nor

the estimation of the impulse responses of other series in the system. Moreover, one could produce

impulse responses directly by adapting (16) to local projections as in Jorda (2005).

Step E5: Model Validation Our maintained assumptions are that Ft are pervasive amongst

Xt rather than (Xt, X
OTH
t ) and by assumption, Xt have a strong factor structure. We refer to X

as a ’training sample’. This is useful because once the estimated common shocks v̂ft are available,

they can be treated as regressors in a FADL model for zt (scalar) not necessarily in Xt. This is

because if (Xt, X
OTH
t ) have a factor structure, the shocks vft common to Xt are also common to

variables in XOTH
t . If the common factors are important for zt ⊂ XOTH

t , then FADL coefficients

on vft and its lags should be statistically significant.

4 Relation to the Other Methods and Allowing for Observed Factors

An important difference between our approach and existing structural FAVAR analysis is that we

estimate the impulse responses directly rather than inverting a VAR. Chang and Sakata (2007)

estimates the shocks as residuals from long vector autoregressions in observed variables. The

authors show that their estimated impulse responses are asymptotically equivalent to the local

projections method used in Jorda (2005). Dufour and Renault (1998) have proposed the local

projections to study the Granger-causality at different horizons. Fève and Guay (2009) develops

similar SVAR framework to study the effects of news shocks on worked hours. Our analysis has the

additional complication that the factors are latent. Thus, we first estimate the space spanned by

common factors, then estimate the space spanned by the common shocks, before finally estimating

the impulse response functions.
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It is useful to relate our estimate of Ψf (L) with the conventional FAVAR approach which starts

with the representation(
Ft
Xt

)
=

(
Φ 0

ΛΦ D(L)

)(
Ft−1

Xt−1

)
+

(
εFt

ΛεFt + vXt

)
from which it follows that

xt = ΛΦL(I − ΦL)−1εFt + ΛεFt + vXt

=

(
ΛΦL(I − ΦL)−1 + Λ

)
εFt + vXt.

The dynamic effects of shocks εFt to the static factors on (prewhitened) data are determined by

Λ

(
ΦL(I − ΦL)−1 + I

)
= Λ

∞∑
j=0

Φi+1Li+1. (17)

At lag j, the N ×N response matrix

ΛΦj =
(

Λ′i Λ′2
... Λ′N

)′
Φj .

Intuitively, the total effect of εFt depends on Xt through Ft and hence depends on the dynamics

of Ft and the importance of the factor loadings on Xt. Assuming that the reduced form shocks are

related to the structural shocks via εFt = A0vft, the response to the structural shocks estimated

by a FAVAR is

Ψ̂f
j = Λ̂Φ̂jA−1

0

which is a product of three terms: two that are the same for all i, and one (Λ̂) that is specific to

unit i’s. Since Λ̂i is only available for any xit ∈ Xt, Ψf
j can be constructed only for N series. This

is a consequence of the fact that the FAVAR estimates the impulses without directly estimating

vft. Since we estimate vft, we can construct impulse responses for series not in X.

In contrast, our estimator of Ψf
j is Λ̂′iΦ

jA0, which may not equal Λ̂′iΦ̂
jA0, because we do not

fully impose restrictions of the dynamic factor model on the static factor representation. Instead of

a large FAVAR system, we estimate the FADL one variable at a time. Cross parameter restrictions

between αyf (L) and αyy(L) are also not imposed. As is usually the case, system estimation is more

efficient if the restrictions are true. However, misspecification in one equation can adversely affect

the estimates of all equations. This possibility increases with N . The single equation FADL esti-

mates are more robust to misspecification than those that rely on a large number of overidentifying

restrictions which are often imposed on variables that are not of primary interest, or whose factor

structure may not be strong.

Finally, restrictions on Γ0 and Λ0 alone may not be enough for identification. Consequently, it

is not always easy to directly define A0. FAVARs typically require several auxiliary regressions to

determine A0. In addition to incurring sampling variations at each step, the identification procedure

requires tricks that are problem specific. In a FADL setting, the restrictions are directly imposed

when the FADL is estimated. It is more straightforward, as will be illustrated in Section 6.
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4.1 Extension to m Observed Factors

Some economic analysis involves identification of shocks to observed variables in the presence of

latent shocks. For example, Bernanke, Boivin, and Eliasz (2005), Stock and Watson (2005) and

Forni and Gambetti (2010) consider identification of monetary policy shocks in the presence of other

shocks, using the information that some variables have instantaneous, while others have delayed

response to shocks to the observed factor, being the Fed Funds Rate. These studies, summarized in

Appendix B, impose restrictions of the factor models on all series. Our proposed FADL approach

imposes significantly fewer restrictions on the factor model.

To extend the dynamic factor model to allow for m observed common factors wt, let

Xt = λ̃f (L)ft + λ̃w(L)wt + uXt

uXt = D(L)uXt−1 + vXt(
ft
wt

)
=

(
Γ1,ff Γ1,fw

Γ1,wf Γ1,ww

)(
ft−1

wt−1

)
+

(
Γ0,ff Γ0,fw

Γ0,wf Γ0,ww

)(
vft
vwt

)
with Γ1,fw 6= 0 and Γ0,wf 6= 0. Without these assumptions, wt is weakly exogenous and can be

excluded from the analysis. The FADL representation of Xt is

Xt =
(
λ̃f (L) λ̃w(L)

)
(I − Γ1)−1Γ0

(
vft
vwt

)
+ (I −D(L)L)−1)vXt

= Ψf (L)vft + Ψw(L)vwt + ΨX(L)vXt.

Let Wt be a vector consisting of wt and its lags. Assume that its joint dynamics with Ft can be

represented by a VAR(1): (
Ft
Wt

)
=

(
ΦFF ΦFW

ΦWF ΦWW

)(
Ft−1

Wt−1

)
+

(
εFt
εWt

)
. (18)

The static factors are estimated from prewhitened data that also nets out the effects of the observed

factors, and the construction of the structural shocks vft must take into account that the reduced

form innovations to the static factors can be correlated with the innovations to the reduced form

representation of the observed factors. Let xit = Xit − δi(L)Xit−1 and define

xit = ΛFi Ft + ΛWi Wt + vXit.

The steps can be summarized as follows.

Step W1: Estimate Ft conditional on Wt by iterating until convergence

min
D(L),Λ,F

=

T∑
t=1

(
(I −D(L)L)Xt − ΛFFt − ΛWWt

)′(
(I −D(L)L)Xt − ΛFFt − ΛWWt

)
.

(i) Initialize δi(L) and ΛWi using estimates from a univariate AR(px,i) regression inXit augmented

by Wt.

(ii) Let F̂t be the k principal components of xx′ using the normalization that F ′F/T = Ik.

(iii) Estimate ΛF , ΛW and D(L) by regressing Xit on F̂t, Wt and lags of Xit.
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Step W2: Estimate ΦF and ΦW from a VAR in F̂t and Wt, respectively. Also let (ε̂Ft ε̂Wt)

be the residuals from estimation of (18).

Step W3: Estimate vft and vwt:

(i) Let ε̂Xit = xit − Λ̂′iF Φ̂F F̂t−1 − Λ̂′iW Φ̂WWt−1, where F̂t are the iterative principal compo-

nents of the full panel. Estimate reduced-form common shocks, ε̂t = (ε̂′ft ε̂
′
wt)
′, as principal

components of ε̂Xit, or as eigenvectors from covariance matrix of VAR residuals (ε̂Ft ε̂Wt).

(ii) Let X = (X1, X2, . . . Xq) be data organized into q blocks. For b = 1, . . . q, let ε̂fb be the

eigenvector corresponding to largest eigenvalue of the nb × nb matrix ε̂′
Xb ε̂Xb .

(iii) Orthogonalize ε̂t using the causal or block ordering of the variables to get v̂ft and v̂wt.

Step W4: Construct the impulse responses: Estimate by least squares (with restrictions on

αyf (L) and αyw(L)):

yt = αyyyt−1 + αyf (L)v̂ft + αyw(L)v̂wt + vyt. (19)

Then ψ̂f (L) =
α̂yf (L)

(1−α̂yy(L)) gives the response of yt to vft holding Wt fixed, when the latter is

considered as a control. In addition, ψ̂w(L) =
α̂yw(L)

(1−α̂yy(L)) gives the response of yt to vwt.

5 Simulations

We use two sets of simulation exercises to evaluate the finite sample properties of the identified

impulse responses. In the first case, the data generating process consists of the DFM (1)-(3) , while

in the second experiment the data are simulated from a multi-sector dynamic stochastic general

equilibrium (DSGE) model following Ruge-Murcia and Onatski (2010).

5.1 Experiment I

Data are simulated from equations (1)-(3) with λ̃(L) being a polynomial of degree 1. The persistence

parameter δi is uniformly distributed over (.2,.5). The errors vXit, vft and the non-zero factor

loadings are normally distributed with variances σ2
X , 1, σ

2
λ respectively. We set T = 200 and N =

120 to mimic the macroeconomic panels used in empirical work.

The structural moving-average representation is

Xit =
(
λ̃0i λ̃1iL

)(
I − Γ1L

)−1

Γ0

(
vf1t

vf2t

)
+ (1− δiL)−1vXit.

This implies that the impact response of Xit to the shocks is summarized by

Xit = (λ̃0,i,1 λ̃0,i,2)

(
γ0,11 γ0,12

γ0,21 γ0,22

)(
vf1t

vf2t

)
+ vXit. (20)

DGP 1: q = 2 factors, Γ1 =

(
0.75 0

0 0.7

)
, σλ,1k = 1.
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case a: Γ0 = I, case b: Γ0 =

(
1 0

0.5 1

)
, σλ,2k = 0.8.

The N variables are ordered such that the first N/2 variables respond contemporaneously to

both shocks and are labeled ‘fast’. The last N/2 do not respond contemporaneously to shock 2 and

are labeled slow’. By design, X1t is a fast variable and XNt is a slow variable. This structure is

achieved by specifying

(λ̃0,i,1 λ̃0,i,2), i = 1, . . . , N/2 and (λ̃0,i,1 0) i = N/2 + 1, . . . , N.

Let Yt = (X1t, XN,t) be the two variables whose impulse responses are of interest. Since there are

no observed factors, estimation begins with E1 and E2. We consider both identification strategies

and estimate two FADL regressions, one for each variable in Yt. As a benchmark, we also estimate

the (infeasible) FADL regressions using the true common shocks, vft.

The results are summarized in Table 1. The top panel shows that for DGP 1a, the correlation

between vfjt and v̂fjt are well above 0.90 for both identification strategies. For DGP 1b, Method

(a) is more precise than (b) but the latter is still quite precise. The correlation between vfjt and

vfkt, i 6= k, are numerically small. The middle panel of Table 1 reports the RMSE of the estimated

impulse responses when the shocks are observed. Given that there are two shocks, there are two

impulse responses to consider for each of the two variables. We use vfj → Xk to denote the response

of Xk to shock j, where k = 1 is the fast variable, and k = N is the slow variable. The third panel

reports results when the common shocks have to be estimated. The ψ̂ are practically identical to

the analytical ones given by (20). Furthermore, the impact response of slow variable to second

shock is not statistically different from zero (not reported).

DGP 2: q = 2 latent and m = 1 observed factors Let σλ,jk = 1, σλ,1k = 1, σλ,2k = 0.8, and

σλ,3k = 0.7 and Γ1 =

0.75 0 0
0 0.7 0
0 0 0.65

.

case a: Γ0 = I, case b: Γ0 =

 1 0 0
0.4 1 0
0.3 0.2 1

.

The ordering of structural shocks is vft = (vslowft , vmpft , vfastft ). The goal is (partial) iden-

tification of the effects of vmpft . Again, the N variables are divided between fast and slow: slow

variables do not respond on impact to second and third shocks, and at least one variable does not

respond immediately only to the third shock, such that the causal ordering holds.

After the common shocks are estimated and identified according to Methods RO and BO, two

FADL regressions are estimated for the two components in Yt: one fast and one slow variable. The

results are summarized in Table 2. As we are interested in partial identification of the second shock,

we only report results on the approximation of vmpft , and impulse responses of two variables to this

shock. As in the previous exercise, FADL regressions with true shocks produce impulse response

coefficients practically identical to the analytical ones. The estimated second shock is very close to

the true one and ψ̂(L) very close to true impulse response coefficients.
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5.2 Experiment II

The previous simulation exercise served to evaluate if the estimation of FADL representation is able

to recover the true shocks and generate accurate impulse responses when the DGP is a DFM. Now,

we replicate exactly the same simulation design from Ruge-Murcia and Onatski (2010): a large

multi-sector DSGE able to produce hundreds of aggregate and disaggregate series. The objective

is to use this laboratory to evaluate if the FADL methodology can recover the impulse responses

to an exogenous monetary policy shock and compare its performance to standard FAVAR analysis.

We proceed in following steps:

1. Simulate 156 series that consist of: 6 aggregate and 150 sectoral variables (output, hours

worked, wages, consumption and inflation). All the details are in Ruge-Murcia and Onatski

(2010) and Matlab codes are publicly available.

2. Estimate FADL and FAVAR models on simulated data and produce impulse responses to

exogenous money growth shock. Compare their performance in terms of mean (and median)

squared (and absolute) errors.

The previous steps are repeated 1000 times. The results for aggregate series are summarized

in Table 3. For the sake of space, additional results and estimation details are presented in the

not-for-publication online Appendix. Overall, FADL models provide better approximations of true

impulse responses of aggregate series, especially when the performance is measured by median

RMSE and by mean absolute error. Also, we remark that estimating common shocks from a subset

of 118 series, out of 156, often shrinks the estimation error.5 Moreover, the uncertainty around

median impulse response estimates is much smaller in case of FADL model. Similar results for

sectoral series are summarized in the online Appendix.

6 Two Examples

In this section, we use FADL to analyze two problems: measuring the dynamic effects of monetary

policy shocks and news (technology) shocks.

6.1 Example 1: Effects of a Monetary Policy Shock

As in Bernanke, Boivin, and Eliasz (2005), the monetary authority observes Nslow variables (such

as measures of real activity and prices) collected into Xslow
t when setting the interest rate Rt but

does not observe Nfast variables (such as financial data) collected into Xfast
t . In this exercise, Rt

is an observed factor. Let vft = (vslowft , vmpft , vfastft ) be the vector of q common shocks, where

vmpft is the monetary policy shock, vfastft is a vector q1 shocks, specific to Xfast, and vslowft is a vector

of q2 shocks, specific to Xslow
t respectively, with q = q1 + q2 + 1. The issue of interest is (partial)

identification of the effects of monetary policy shock, meaning that the effects due to vslowft and

vfastft are not of interest.

5A set of sectoral series, that do not respond significantly enough to money growth shock, have been removed
from Xt and form the dataset XOTH . See tables in the online Appendix.
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Bernanke, Boivin, and Eliasz (2005) identify the monetary policy shock by assuming that Ψf
0 is

a block lower triangular structure. This involves restrictions on Nslow > q2 variables. In a data rich

environment, some of these restrictions could well be invalid. Instead, we consider an alternative

identification strategy using fewer restrictions. It is based on Assumption RO which can be achieved

by choosing the first q variables to compose of q1 (slow) indicators of real activity and prices, followed

by the monetary policy instrument.6 The Assumption BO, which identifies the shocks at the block

level, is also easy to apply. The data are ordered as Yt = (Xslow′
t , Rt, Xfast′

t )′. After estimating

vslowft from Xslow
t and and vfastft from Xfast

t , the monetary policy shocks are the residuals from a

regression of Rt on current and lag values of v̂slowft . By construction, the estimated structural shocks

are mutually uncorrelated under both RO and BO assumptions. A FADL in all the shocks is then

estimated for each variable of interest.

In terms of matrix Ψf
0 , Bernanke, Boivin, and Eliasz (2005) assumes:

Ψf
0 =



ψ0,1,1

Nslow×q1

0
Nslow×1

0
Nslow×q2

ψ0,2,1

1×q1

ψ0,2,2

1×1

0
1×q2

ψ0,3,1

Nfast×q1

ψ0,3,2

Nfast×1

ψ0,3,3

Nfast×q2

.


Assumptions RO and BO both assume that the top q × q block of Ψf

0 is lower triangular:

Ψf
0,1:q,1:q =



ψ0,1:q,1

q1×q1

0
q1×1

0
q1×q2

ψ0,2:q,1

1×q1

ψ0,2:q,2

1×1

0
1×q2

ψ0,3:q,1

q2×q1

ψ0,3:q,2

q2×1

ψ0,3:q,3

q2×q2

.


However, the Ψf

0 matrix and v̂ft identified by RO will be different from those identified by BO.

Under Assumption RO, all N series are used to estimate the q vector εft. Thus any q series in the

training sample can be used to identify primitive shocks v. Under Assumption BO, εjft is estimated

from block j of Xt. Thus, the j shock in vft is identified from one of the Nj series in block j

of Xt. Assumption BO also allows a priori economic restrictions to be imposed on some or all

variables within the blocks. For example, we can restrict all Nslow series not to react on impact to

a monetary policy shock, while the response of fast moving variables is unrestricted. Since these

restrictions are imposed on equation by equation basis, they do not affect the estimation nor the

identification of structural shocks.7

6One may also add q2 financial indicators at the end of the recursion, but Bernanke, Boivin, and Eliasz (2005)
found that there is little informational content in the fast moving factors that is not already accounted for by the
federal funds rate.

7The restrictions can vary across series in the block. For example, one series could be restricted to respond only 2
periods after the shock, the sign of another variables could be fixed, the shape of the impulse response function could
be constrained for a third variables, and so on.
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6.1.1 Data and Results

The training sample used to estimate the factors consists of 107 quarterly aggregate macroeconomic

and financial indicators over the extended sample 1959Q1- 2009 Q1. This data set consists of fast

and slow moving variables. The Federal funds rate (FFR) is treated as an observed factor. All data

are assumed stationary or transformed to be covariance stationary. The complete list of variables

is given in the online Appendix.

Our estimation differs from Bernanke, Boivin, and Eliasz (2005) in two ways. First, we use

quarterly data. Second, we estimate the factors by IPC to take care of autocorrelation in residuals.

According to information criteria in Amengual and Watson (2007) and Bai and Ng (2007), there

are q = 3 latent dynamic factors in the training sample. Identification is achieved by imposing a

causal ordering. We order commodity price inflation first, followed by GDP deflator inflation, un-

employment rate, and then FFR. Hence monetary policy is the last variable in this causal ordering,

which implies zero contemporaneous response to monetary policy by the slow moving variables.

We only impose restrictions on q series (one from each block) while Bernanke, Boivin, and Eliasz

(2005) impose restrictions on all series belonging to the slow moving block.

Compared to Stock and Watson (2005), we impose the same minimal number of restrictions to

identify the structural shocks, but our approach differs in estimating the impulse response functions.

Instead of constructing impulse response coefficients of Xt as (I−D̂(L))Λ̂(I−Γ̂1(L))−1Γ̂0, we rather

estimate the product, ψfi (L), equation by equation for any element of Xt and XOTH
t .

The 12 period impulse responses are presented in Figure 1. As in Bernanke, Boivin, and Eliasz

(2005), controlling for the presence of common shocks resolves anomalies found in the literature.

After a monetary policy shock, the fast moving variables such as Treasury bills increase immediately,

while stock prices, housing starts, and consumer expectations fall. Furthermore, many measures of

the slow variables including real activity and prices decline as a result of the shock without evidence

of a price puzzle. The exchange rate appreciates fully on impact, with no evidence of overshooting.

The results for the variables of interest are in line with Christiano, Eichenbaum, and Evans (2000)

who use recursive and non-recursive identification schemes to study the effects of monetary policy,

using small VARs. However, once the common shocks are estimated, the effects of monetary policy

can be studied for many variables, not just the q variables used in identification. The scope of the

analysis is much larger than a small VAR.

To check the validity of the factor structure in series not in the training sample, we consider

XOTH
t consisting of hundreds of disaggregated series. Amongst these are (i) sectoral CPI, PCE,

and PPI measures of inflation, (ii) disaggregated employment series, (iii) investment measures (iv)

18 consumption series, and (v) industrial production sectoral data. For each of these additional

variables, the Wald test is used to test the null hypothesis that all coefficients in αyf (L) are jointly

zero. The null hypothesis cannot be rejected at the five percent level for many series including one

sectoral CPI, 15 PCE, one employment, one investment and two consumption series. For these

series, the data does not support the presence of a factor structure.

We then proceed to analyze the effects of monetary policy on variables in XOTH
t . Interestingly,

the impulse responses of variables not affected by vft display price-puzzle like features. As seen in

the top panel of Figure 2 for some of these variables, an increase in the Fed Funds rate increases
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rather than lowers prices. The bottom panel displays results for four series with significant α̂yf (L).

For these latter set of variables, the impulse responses are similar to those reported for the variables

in the training sample, namely, that an increase in the Fed funds rate lowers prices.8

6.1.2 Asymmetric Effects of a Monetary Policy Shock

In order to show the flexibility of the FADL approach, we now verify the asymmetry of mone-

tary policy effects. In the standard VAR (and FAVAR) approach, one must specify and estimate

a nonlinear model to allow for asymmetric impulse responses.9. In FADL framework this is eas-

ily handled by adding positive and negative values of the identified monetary policy shock time

series separately to each univariate regression in equation (16). Let v̂MP+
ft be a time series of

positive monetary policy shocks and zero elsewhere, and v̂MP−
ft be a vector containing negative

shocks. We remove v̂MP
ft from FADL regression 16 and add [v̂MP+

ft v̂MP−
ft ]. Then, impulse re-

sponses to both contractionary and expansionary monetary policy shocks are easily computed by

inverting the autoregressive part. Another approach is adopted by Angrist, Jorda, and Kuersteiner

(2013) and Barnichon and Matthes (2014) who approximate the impulse responses directly from

the MA representation using Gaussian basis functions and with a semi-parametric estimator based

on propensity score weighting respectively. Our framework is computationally much easier, is not

subject to non-fundamentalness problem and allows to study the asymmetry of monetary policy

effects on hundreds of economic and financial indicators.

The results are presented in Figures 3 to 6. We find that contractionary monetary policy

causes more significant effects on several measures of economic activity. First, Figure 3 shows

the impulse responses of GDP, Industrial production (IP), Employment and Consumption after

contractionary and expansionary monetary policy shocks. It reveals that the response of these real

activity variables are much less significant after the expansionary shock compared to their responses

to a contractionary policy, suggesting that only (unexpected) tightening in monetary policy have

important (statistical and economical) impacts. The IRFs of all 24 series are presented in online

Appendix. Second, the comparison of point estimates in Figure 4 shows that, in general, the

asymmetric contractionary shock produces more pronounced effects on real activity, consumption,

credit and housing starts than in the case of the average impulse. Third, expansionary shock

generates lot of movements in these series compared to the symmetric responses, see Figure 5,

except for the consumer expectations that reacts much more. Fourth, we find quite symmetric

effects of the monetary policy on financial markets, as measured by the IRFs of Treasury Bills

and SP500 returns. Finally, Figure 6 shows the variance decomposition after the asymmetric

contractionary and expansionary monetary policy shocks. Interestingly, the expansionary shock is

much more important for interest rate, M2 and consumer expectations, while the contractionary

shock dominates for real activity series.

8The impulse responses of all sectoral variables from XOTH
t are presented in the online Appendix. The responses

of many disaggregated series are in line with theory: a decline of real activity and price indicators across several
sectors after an adverse monetary policy shock. In case of employment variables, only mining and government sector
series diverge from others during the first year after the shock, while the price indicators of some nondurable goods
sectors present the price puzzle behavior.

9See Cover (1992) and Weise (1999) among others.

18



6.2 Example 2: Effects of a News Shock

Beaudry and Portier (2006) consider technology and news shocks, vft = (vTFPt vNSt )′, interpreted

as an announcement of future change in productivity. They are interested in the effects of these

two shocks on productivity X1t. Consider identification by the short run restrictions. Suppose that

the first N1 variables X1
t ⊂ Xt do not respond immediately to vNSt , but its response to vTFPt is

unrestricted. Then Ψf
0 is lower block triangular, viz:

Ψf
0 =



ψf0,1,1 0
...

...

ψf0,N1+1,1 ψf0,N1+1,2
...

...

ψf0,N,1 ψf0,N,2


≡

 Ψf
0,1:N1,1

01:N1,1

. . . . . .

Ψf
0,N1+1:N,1 Ψf

0,N1+1:N,2

 .

This structure can be achieved if Λ0 and Γ0 are both lower block triangular, ie.

Λ0

N×2

=


λ0,1,1 0

...
...

λ0,N1+1,1 λ0,N1+1,2
...

...
λ0,N,1 λ0,N,2

 =

 Λ0,1:N1,1
... 0N1×1

Λ0,N1+1:N,1
... Λ0,N1+1:N,2

 and Γ0

2×2

=

(
Γ0,11 0
Γ0,21 Γ0,22.

)

The zero restriction should hold for all series in the first block. But since there are only two

shocks, any two series permit exact identification provided one is from X1
t , one from X2

t , and one

restriction is imposed on Ψf
0 . Beaudry and Portier (2006) only uses two variables (X1t, XNt) for

analysis where X1t is a measure of TFP and XNt is stock price. We allow for N > 2 variables. But

unlike standard VARs which require restrictions of order N2 to identify N shocks, we use q series

to exactly identify q = 2 shocks. As discussed earlier, instead of putting restrictions on Γ0 or Λ0

separately, our restrictions are imposed on the relevant row(s) of Ψf
0 = Γ0Λ0. The bivariate system

has the property that(
X1t

XNt

)
=

(
ψf0,11 0

ψf0,21 ψf0,22

)(
vTFPt

vNSt

)
+
∞∑
j=1

(
ψfj,11 ψfj,12

ψfj,21 ψfj,22

)(
vTFPt−j
vNSt−j

)
.

The number of identifying restrictions used in the FADL is of order q2 irrespective of N . This also

contrasts with standard FAVARs which impose many overidentifying restrictions. In our setup, a

large N is desirable for FADL because it improves estimation of vft. Long run restrictions can

similarly be imposed so that Ψf (1) is block lower triangular. A FADL leads to exact identification

using the salient features of the factor model.

6.2.1 Data and Results

Our data consists of Xt = (XTFP
t , XSP

t , XOTH
t ), where XTFP

t contains six TFP measures from

FRB San Francisco, XSP
t is a vector of eight S&P and Dow Jones aggregate stock price indicators,
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and XOTH
t is a vector of 104 macroeconomic time series used in the previous example but with the

stock prices removed.10 Beaudry and Portier (2006) only use one series of the six series in XTFP
t

and one series in XSP
t at the time. Forni, Gambetti, and Sala (2011) use the same TFP series and

some of our stock price measures.

Two identification strategies are considered:

i (Recursive Ordering) estimate two common shocks from Xt = (XTFP
t , XSP

t ). Two series, one

from XTFP
t and one from XSP

t are selected. By ordering the TFP series first, the rotation

matrix B that identifies the technology and the news shock is easily computed.

ii (Block Ordering) εTFPt is estimated exclusively from XTFP
t and εSPt is estimated from XSP

t .

The identification is based on the structure(
εTFPt

εSPt

)
=

(
a11 0
a21 a22

)(
vTFPt

vNSt

)
.

Effectively, v̂TFPt = εTFPt and v̂NSt are the residuals from a projection of ε̂SPt onto v̂TFPt . Note

that under both identification strategies the estimated shocks are mutually uncorrelated.

Once v̂TFPt and v̂NSt are available, variable by variable FADL equations are estimated for all

series in Xt. The zero impact restrictions are imposed for all TFP measures, while all other FADL

regressions are left unrestricted. The results for the two identification strategies and for news shocks

vNSt are given in Figures 7 and 8. We report results for stationary (transformed) data.11 The Table

5 contains p-values for Wald test for the null hypothesis of no factor structure in XTFP
t , XSP

t and

XOTH
t variables. The abbreviations ‘RO’, ‘BO’ stand for Assumption RO and BO respectively.

The null hypothesis is strongly rejected for many series.

Of special interest here are the responses to a positive news shock. The forward looking variables

such as stock prices, housing starts, new orders and consumer expectations increase on impact.

Consumption reacts positively. The wealth effect does not seem important enough such that the

worked hours also increase on impact.

Our results are in line with Beaudry and Portier (2006) for the pro-cyclical response of worked

hours. However, Barsky and Sims (2011) also estimate positive response of consumption and find

an immediate decrease of hours. Forni, Gambetti, and Sala (2011) find that both consumption and

hours respond negatively on impact. These differences can be due to the choice of variables used

to identify the shocks and to the variables selected for analysis. In particular, these studies used a

small set of worked hours measures. We check the sensitivity of our results to a much broader set

of available indicators.

To this end, we assess the sensitivity of our results (under the assumption of a block structure)

to additional variables as follows:

10The complete list of additional variables used in news shock application is available in online Appendix.
11For the sake of space, the impulse responses to a positive technology shock vTFP

t are reported in the online
Appendix. The estimated dynamic effects of technology shocks are in line with Christiano, Eichenbaum, and Vigfusson
(2003) who suggest that technology improvements are pro-cyclical for real activity and hours measure, but contrary
to Basu, Fernald, and Kimball (2006) and Gali (1999).
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a Estimate εOTHt from the macro data XOTH
t . Identification is now based onεTFPt

εSPt
εOTHt

 =

a11 0 0
a21 a22 0
a31 a32 a33

vTFPt

vNSt
vOTHt

 .

b change the ordering to εTFPt , εOTHt with εSPt ordered last in view of the forward looking

nature of stock prices.

These results are denoted Block 2 and Block 3 respectively and correspond to BO2 and BO3 in

Tables and Figures. In a VAR setup, there would be 104 VARs to consider when there are 104

macro variables that might not be econometrically exogenous to TFP and stock prices. In the

factor setup, we only need to estimate one set of macro shocks from 104 macro series. As shown in

Figure 8, the effects of news shocks are smaller when the macro shocks are present. In other words,

omitted variables from the VAR could have biased the estimated effects of news shocks. However,

for an assumed q, the identified impulse responses are robust to the ordering of the variables.

As is well known, VARs involving hours worked are sensitive to whether the hours series is

in level or in difference, see for example, Fève and Guay (2009). We use the most conservative

specification Block 3 to further understand the dynamic response the level and growth of average

weekly hours (AWH) to a positive news shock. The results are presented in Figure 9. The dy-

namic responses of AWH and total hours indices are plotted in Figure 10. Regardless of the data

transformation, the hours series are pro-cyclical after the news shock. This exercise illustrates the

FADL can be used to check the robustness of the results to many other measures without affecting

the identification of structural shocks.

7 Conclusion

In this paper, we have proposed a new approach to analyze the dynamic effect of common shocks

in a data-rich environment. After estimating the common shocks from a large panel of data and

imposing a minimal set of identification restrictions, the impulse responses are obtained from an

autoregression in each variable of interest, augmented with a distributed lag of structural shocks.

The FADL framework presents several advantages. The method is more robust to a fully

structural factor model when the identifying factor restrictions do not hold universally. Since the

impulse responses are obtained from a set of regressions, the restrictions are easy to impose, and

implications of the factor model can be tested. The estimation of common shocks is less likely to be

affected by the presence of weak factors. The FADL methodology is used to measure the effects of

monetary policy shocks, and to news and technology shocks. The approach allows us to go beyond

existing structural FAVAR, and to validate restrictions of the factor model.
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Appendix A: Consistency of Dynamic Multipliers Least Squares Estimates

Start from the infeasible regression (6) and use vft = Γ−1
0 εft, εft = J−1

NT ε̂ft to get

yt = α∗yy(L)yt−1 + α∗yf (L)Γ−1
0 εft + α∗yf (L)Γ−1

0 J−1
NT ε̂ft − α

∗
yf (L)Γ−1

0 J−1
NT εft + v∗yt

= α∗yy(L)yt−1 + αyf (L)ε̂ft + vyt,

where αyf (L) = α∗yf (L)Γ−1
0 J−1

NT and vyt = v∗yt − αyf (L)(ε̂ft − JNT εft). Without loss of generality,

assume py = 1 and pf = 0 and write the model in matrix form

y = ẑδ + e, (21)

where ẑ = (zyt, ε̂ft) = (yt−1, ε̂ft), and δ = [α∗yy(1), αyf (0)]′. Let z = (yt−1, JNT εft) so that

δ∗ = [α∗yy(1), α∗yf (0)Γ−1
0 J−1

NT ]′ are the parameters from infeasible FADL regression when εft are

observed. Let Sẑẑ = T−1
∑T

t=1 ẑtẑ
′
t. Least squares estimation of (21) yields

√
T (δ̂ − δ) = S−1

ẑẑ T
−1/2ẑ′e

= S−1
ẑẑ T

−1/2ẑ′e+ S−1
ẑẑ T

−1/2ẑ′(εfJ
′
NT − ε̂f )αyf (0)′.

Following Bai and Ng (2006), 1
T

∑T
t=1(ε̂ft − JNT εft)ẑ′t = Op(C

−2
NT ), and thus

T−1/2ẑ′(ε̂f − εfJ ′NT ) = Op(T
1/2C−2

NT )→ 0 if
√
T/N → 0.

In addition,

T−1/2ẑ′e = T−1/2(z′ye JNT ε
′
fe) + op(1)

= T−1/2MNT z
′e+ op(1),

where MNT = diag(I, JNT ) and z′ = (z′y ε
′
f ). Under standard assumptions, T−1/2z′e→ N(0,Σze),

where Σze = plimSẑe = T−1
∑T

t=1 ẑtẑ
′
te

2
t . Thus,

√
T (δ̂ − δ) = S−1

ẑẑ MNTT
−1/2z′e+ op(1)→ N(0,Σ

δ̂
),

where Σ
δ̂

= plimS−1
ẑẑ MNTΣẑeM

′
NTS

−1′
ẑẑ . In addition,

Sẑẑ = MNTSzzM
′
NT + op(1)→MΣzzM

′.

Thus, the asymptotic covariance matrix of δ̂ reduces to

Σ
δ̂

= M−1′Σ−1
zz ΣzeΣ

−1
zzM

−1

which can be estimated by Σ
δ̂

= S−1
ẑẑ ΣẑêS

−1
ẑẑ . If

√
T/N → c > 0, then T−1/2ẑ′(ε̂f − εfJ ′NT ) does

not vanish and δ̂ will have an asymptotic bias, see Ludvigson and Ng (2009) for details.

We have shown that the least squares estimates of αyf (L) will consistently estimate α∗yf (L)Γ−1
0 J−1

NT .

Hence, to get consistent estimates of the orthogonalized impulse responses we need to impose a

priori restrictions in terms of B = Γ−1
0 J−1

NT .
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Appendix B: Relation to Other Methods with Observable Factors

The estimated common shocks are treated as regressors of a FADL. As such, a priori restrictions on

the impulse response functions can be directly imposed in estimation of the FADL by least squares.

The approach is simpler and more transparent than existing implementations of structural FAVARs.

Consider the identification of monetary policy shocks in the presence of other shocks as in

Bernanke, Boivin, and Eliasz (2005). Their point of departure is a static factor model with latent

and observed factors:

Xt = ΛFFt + ΛRRt + ut (22)[
Ft
Rt

]
= Φ

[
Ft−1

Rt−1

]
+ ηt (23)

where Ft is vector of r latent factors and Rt is the observed factor (usually Federal Funds Rate or

3-month Treasury Bill). The authors organize the N = 120 data vector Xt into a block of slow-

moving’ variables that are largely predetermined, and another consisting of ‘fast moving’ variables

that are sensitive to contemporaneous news. The idiosyncratic errors are assumed to be serially

uncorrelated.

BBE Identification

1 Estimate Ft.

i Let Ĉ(Ft, Rt) be the K principal components of Xt.

ii Let XS
t be NS ‘slow’ moving variables that do not respond immediately to a monetary

policy shock. Let the K principal components of XS
t be C?(Ft).

iii Define F̂t = Ĉ(Ft, Rt) − b̂RRt where b̂R is obtained by least squares estimation of the

regression

Ĉ(Ft, Rt) = bCC
?(Ft) + bRRt + et.

2 Estimate the loadings by regressing Xt on F̂t and Rt: Λ̂F and Λ̂R.

3 Estimate the FAVAR given by (23) and let η̂t be the residuals. From the triangular decom-

position of the covariance of η̂t, let A0 be a lower triangular matrix with ones on the main

diagonal Then η̂t = Â0ε̂t are the monetary policy shocks.

4 Obtain IRFs for F̂t and Rt by inverting (23) and using Â0

5 Multiplying the IRFs from the previous step by Λ̂F and Λ̂R to obtain the IRFs for Xt.

The novelty of the BBE analysis is that Step (1) accommodates the observed factor Rt when

F̂t is being estimated. By construction, Ĉ(Ft, Rt) spans the space spanned by Ft and Rt while

C∗(Ft) spans the space of common variations in variables that do not respond contemporaneously

to monetary policy. Since Rt is observed, the regression then constructs the component of Ĉt that

is orthogonal to Rt. Once F̂t is available, Step (2) is straightforward. Under the BBE scheme, the
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common shocks are identified in Step (3) when a FAVAR in (F̂t, Rt) is estimated. Because F̂t may

be correlated contemporaneously with Rt, the monetary policy shocks are identified by ordering Rt
after F̂t in (23).12

The lower triangular of A0 is not enough to identify the structural shocks as the response

depends on the product
(
ΛF ΛR

)
A0.13 Thus, BBE impose additional restrictions. In particular,

the K slow moving variables are ordered first in Xt. Furthermore, the K × K block of ΛF is

identity, and the first element in ΛR is zero. As a result, the first K+ 1×K+ 1 part of the product(
ΛF ΛR

)
A0 is lower triangular. For K = 2, 1 0 0

0 1 0
λ31 λ32 λ33

 1 0 0
a21 1 0
a31 a32 1


The structural model is just-identified.

Stock and Watson (2005) The SW approach treats monetary policy as a dynamic factor.

The identification assumptions are that (i) the monetary policy shock does not affect the slow-

moving variables contemporaneously; and (ii) the slow-moving shock and monetary policy affects

the Fed Funds rate contemporaneously. Thus, as in Bernanke, Boivin, and Eliasz (2005), the

slow-moving variables are ordered first, followed by the Fed funds rate, and then the fast-moving

variables. The point of departure is that εXt = Λεft + vXt is assumed to have a factor structure

and εft = Gηt = GBvft. Letting C = GB, the errors are related by

εXt = ΛCvft + vXt

where vft is of dimension q. The steps are as follows:

1 Let ε̂Xt into (ε̂slowX,t , ε̂fedX,t and ε̂fastX,t ) corresponding to the three types of variables.

2 Let ûFt, the residuals from a VAR in the static factors constructed from the full panel, X.

3 Let the factor component of εfedX,t be the fit from a reduced rank regression of ε̂slowX,t and ûFt.

4 Take the monetary shocks to be the residuals from a projection of of ε̂fedX,t onto v̂slowX,t .

If there are qslow and qfast factors in ε̂slowXt and ε̂fastXt respectively, then q = qslow + qfast + 1. The

identification scheme makes use of the fact that vslowX,t spans the space of εslowX,t and can thus be

12Boivin, Giannoni, and Stevanović (2010) use an alternative way to estimate Ft that does not rely on organizing
the variables into fast and slow.

1 Initialize F̂t to be the K first principal components of Xt.

2 (i) Regress Xt on F̂t and Rt, to obtain Λ̂F,j
t and Λ̂R,j

t . (ii) Compute X̃j
t = Xt − Λ̂R,0

t Rt (iii) Update F̂t as the

first K principal components of X̃t

By construction, F̂t is contemporaneously uncorrelated with Rt This is possible because the step that estimates the
latent factors controlling for the presence of the observed factors is separated from identification of structural shock.
In BBE, ηt depends on the choice of variables used in the first stage to estimate Ft.

13In BBE application, Step 2 estimates of the loadings of slow moving variables to Rt are close to zero.
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identified from a projection of ε̂slowX,t on ûFt. An additional step is needed to estimate the common

variations between ûFt and ε̂slowX,t . This procedure sequentially estimates the rotation matrix B14.

Note that the identification restrictions are imposed directly on the impact coefficients matrix of

the structural moving average representation of Xt, and the structural model is overidentified. The

method is not easily generalizable to other models in which the shocks do not have a block recursive

structure implicit in the model.

FGLR: Forni, Giannone, Lippi, and Reichlin (2009) provides a framework for structural FAVAR

analysis. The method is applied to identify monetary policy shocks in Forni and Gambetti (2010).

1 let Λ̂ be a N × r matrix of estimated loadings and F̂t be the static principal components.

Estimate a VAR in F̂t to get Γ̂(L) and the residuals ûFt.

2 Perform a spectral decomposition of the covariance matrix of ûFt. Let M be a diagonal matrix

consisting of the largest eigenvalue of ûF û
′
F and let K be the r × q matrix of eigenvectors.

3 Let S = KM . The non-orthogonalized impulse responses are given by

Ψ̈η(L) = Λ̂(I − Γ̂(L))−1S.

Step (2) is a consequence of the fact that the VAR in F̂t is singular. Step (3) rotates Ψ̈η by a

q × q matrix of restrictions. Unlike the partial identification analysis of Stock and Watson (2005),

this method estimates the impulse responses for the system as a whole. Mis-specification in a

sub-system can affect the entire analysis, but the estimates are more efficient if every aspect of the

factor model is correctly specified.

14Boivin, Giannoni, and Stevanović (2013) find that the rotation of principal components by B̂ gives interpretable
factors.
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Table 1: Simulation Experiment I, DGP 1

corr(vft, v̂ft)

a. Recursive Ordering b. Block Ordering

DGP 1a

(
0.9844 0.0308
0.0636 0.9790

) (
0.9825 0.0562
0.0953 0.9030

)
DGP 1b

(
0.9843 0.0313
0.0638 0.9777

) (
0.9805 0.0874
0.1188 0.8706

)
RMSE of Impulse Responses: vft observed

vf1 → X1 vf2 → X1 vf1 → XN vf2 → XN

DGP 1a 0.0415 0.0412 0.0426 0.0414
DGP 1b 0.0409 0.0394 0.0422 0.0425

RMSE of Impulse Responses Using v̂ft
a. Recursive Ordering b. Block Ordering

vf1 → X1 vf2 → X1 vf1 → XN vf2 → XN vf1 → X1 vf2 → X1 vf1 → XN vf2 → XN

DGP 1a 0.2452 0.2228 0.2299 0.1963 0.2558 0.2642 0.2366 0.2032
DGP 1b 0.2994 0.2453 0.2702 0.1953 0.2954 0.3556 0.2556 0.2578

This Table presents a summary of results from the simulation experiment I, DGP 1. It shows the correlation between

the true and the estimated common shocks, the Root Mean Squared Error (RMSE) of impulse responses from the

infeasible FADL regression when vft is observed, and the RMSE from the feasible FADL regression when v̂ft is used

instead. X1 is the ‘fast’ moving series that responds on impact to both shocks, while XN the ‘slow’ variable that does

not respond on impact to vf2.

Table 2: Simulation Experiment I, DGP 2

corr(vmpft , v̂
mp
ft )

a. Recursive Ordering b. Block Ordering
DGP 2a 0.9747 0.9629
DGP 2b 0.9774 0.9620

RMSE of Impulse Responses: vf Observed

vf2 → X1 vf2 → XN

DGP 2a 0.0406 0.0417
DGP 2b 0.0399 0.0419

RMSE of Impulse Responses: vf Estimated

a. Recursive Ordering b. Block Ordering
vf2 → X1 vf2 → XN vf2 → X1 vf2 → XN

DGP 2a 0.2743 0.2285 0.2760 0.1996
DGP 2b 0.3155 0.2781 0.3391 0.2466

This Table presents a summary of results from the simulation experiment I, DGP 2. It shows the results only with

respect to the shock of interest: vmp
ft .
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Table 3: Simulation Experiment II, Aggregate series

RMSE: MEAN
M1 M2 M3 M4 M1-ss M2-ss M3-ss M4-ss

consumption 1.578 1.478 1.844 1.583 1.203 1.113 1.432 1.265
inflation 0.613 0.603 0.620 0.653 0.753 0.747 0.739 0.752
output 1.798 1.637 1.967 1.766 1.339 1.214 1.473 1.371
hours 2.179 2.049 2.486 1.874 1.508 1.411 1.930 1.389

RMSE: MEDIAN
M1 M2 M3 M4 M1-ss M2-ss M3-ss M4-ss

consumption 0.733 0.658 0.727 0.725 0.556 0.544 0.571 0.524
inflation 0.500 0.485 0.501 0.526 0.581 0.575 0.618 0.617
output 1.057 0.916 0.982 1.004 0.740 0.696 0.752 0.706
hours 1.320 1.213 1.373 1.159 0.837 0.773 1.056 0.779

RMAE: MEAN
M1 M2 M3 M4 M1-ss M2-ss M3-ss M4-ss

consumption 1.142 1.095 1.174 1.130 0.945 0.899 1.032 0.982
inflation 0.643 0.612 0.646 0.717 0.775 0.744 0.745 0.803
output 1.295 1.222 1.299 1.262 1.050 0.990 1.105 1.071
hours 1.495 1.437 1.547 1.380 1.198 1.148 1.351 1.149

RMAE: MEDIAN
M1 M2 M3 M4 M1-ss M2-ss M3-ss M4-ss

consumption 0.894 0.839 0.858 0.867 0.707 0.692 0.766 0.720
inflation 0.604 0.582 0.604 0.680 0.723 0.698 0.696 0.755
output 1.085 1.033 1.075 1.064 0.847 0.807 0.883 0.865
hours 1.269 1.210 1.279 1.189 0.986 0.946 1.139 0.945

This table presents a summary of results from the simulation experiment II. Numbers are relative to FAVAR: if < 1,

FADL produces smaller error, in terms of the mean (median) of RMSE and RMAE, than FAVAR model. Bold

characters correspond to the smallest error. The models M1 to M4-ss are summarized in Table 4.

Table 4: List of FADL models in simulation experiment II

M1: unrestricted FADL model (estimated number of common shocks and estimated lag structure)
M2: fixed-lag FADL model (estimated q but fixed number of lags: 5 AR lags, 5 lags for each shock)
M3: q = 1 FADL model (one latent common shock plus the money growth and estimated lag structure)
M4: q = 2 FADL model (two latent common shock plus the money growth and estimated lag structure)
M1-ss: same as M1 but common shocks estimated using a subset of series (118 instead of 156)
M2-ss: same as M2 but common shocks estimated using a subset of series (118 instead of 156)
M3-ss: same as M3 but common shocks estimated using a subset of series (118 instead of 156)
M4-ss: same as M4 but common shocks estimated using a subset of series (118 instead of 156)
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Table 5: News Shock, p-values from Wald test for H0 : αyf (L) = 0

Variables in (XTFP
t , XSP

t ) RO BO BO2 BO3

TFP 0 0 0 0
TFP-util 0 0 0 0
TFP-I 0 0 0 0
TFP-C 0 0 0 0
TFP-I-util 0 0 0 0
TFP-C-util 0 0 0 0
S&P: composite 0 0 0 0
S&P: industrial 0 0 0 0
S&P: dividend 0 0 0 0
S&P: price/earning 0 0 0 0
DJ: industrial 0 0 0 0
DJ: composite 0 0 0 0
DJ: transportation 0 0 0 0
DJ: utilities 0 0 0 0

Variables in XOTH
t

GDP 0 0 0 0
IP 0 0 0 0
CONSUMPTION 0 0 0 0
INVESTMENT 0 0 0 0
HOURS 0 0 0 0
HOURS: Overtime 0 0 0 0
EMPLOYEES: NONFARM 0,0262 0,0399 0 0
CLF: EMPLOYED 0 0 0 0
HELP-WANTED ADV 0 0 0 0
AVG HOURLY EARNINGS 0 0 0 0
CAPACITY UTILIZATION 0 0 0 0
CONSUMER EXPECTATIONS 0 0 0 0
UR 0 0 0 0
EMPLOYEES ROMPENSATION 0 0 0 0
CONSUMPTION: NONDUR 0 0 0 0
CONSUMPTION: DURAB 0 0 0 0
CONSUMER CREDIT 0,2422 0,2772 0 0
HOUSING STARTS 0,0062 0,0027 0 0
NEW ORDERS 0 0 0 0
INVENTORIES 0,0718 0,1742 0 0
FFR 0,3513 0,2612 0 0
COMMODITY PRICES 0,0299 0,1384 0 0
CPI 0,3527 0,5556 0 0
GDP DEFLATOR 0,0438 0,0729 0 0

RO and BO refer to identification by causal and block ordering, respectively. The two blocks of data are XTFP
t and

XSP
t . Data from the macro block XM

t are also used in BO2 and BO3. BO2 uses the ordering TFP, SP, Macro. BO3

orders the macro variables before the stock prices.
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Figure 1: Dynamic responses to a contractionary monetary policy shock
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This Figure presents the FADL estimated impulse responses, together with 90% bootstrap confidence bands, of

selected variables from Xt to a contractionary monetary policy shock as identified by recursive ordering assumption

(RO) in Example 1.
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Figure 2: Dynamic responses to a monetary policy shock of series in XOTH
t
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This Figure presents the FADL estimated impulse responses of selected disaggregated price indices from XOTH
t to a

contractionary monetary policy shock as identified by recursive ordering assumption (RO) in Example 1. The top

panel contains responses of series that do not load significantly on v̂ft, while variables in the bottom panel do have

significant distributed lag coefficients.
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Figure 3: Asymmetric IRFs to contractionary and expansionary monetary policy shocks
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This Figure presents the FADL estimated asymmetric impulse responses, together with 90% bootstrap confidence bands,

of selected variables from Xt to contractionary and expansionary monetary policy shocks as identified by recursive

ordering assumption (RO) in Example 1. The top 4 graphs show IRFs to a contractionary shock while the bottom

graphs present IRFs to an expansionary monetary policy shock.
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Figure 4: Comparison of symmetric and asymmetric IRFs to a contractionary monetary policy
shock
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This Figure compares the FADL estimated symmetric (full line) and asymmetric (dotted line) impulse responses of

selected variables from Xt to a contractionary monetary policy shock as identified by recursive ordering assumption

(RO) in Example 1.

32



Figure 5: Comparison of symmetric and asymmetric IRFs to an expansionary monetary policy
shock
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This Figure compares the FADL estimated symmetric (full line) and asymmetric (dotted line) impulse responses of

selected variables from Xt to an expansionary monetary policy shock as identified by recursive ordering assumption

(RO) in Example 1.
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Figure 6: Variance decomposition after asymmetric expansionary and contractionary monetary
policy shocks
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This Figure plots the FADL estimate of the variance decomposition of selected variables from Xt after expansionary

(blue line) and contractionary (black line) asymmetric monetary policy shocks as identified by recursive ordering

assumption (RO) in Example 1.
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Figure 7: Dynamic responses of XTFP
t and XSP

t to a positive news shock
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This Figure presents the FADL estimated impulse responses of all variables in XTFP
t and XSP

t to a positive news shock

as identified by recursive ordering assumption (RO) and block ordering assumptions (BO, BO2, BO3) in Example 2.
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Figure 8: Dynamic responses of selected series in XOTH
t to a positive news shock
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This Figure presents the FADL estimated impulse responses of selected variables in XOTH
t to a positive news shock

as identified by recursive ordering assumption (RO) and block ordering assumptions (BO, BO2, BO3) in Example 2.
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Figure 9: Dynamic responses of average weekly hours measures to a positive news shock
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This Figure presents the FADL estimated impulse responses of average weekly hours (AWH), in level and in growth,

to a positive news shock as identified by block ordering assumptions (BO3) in Example 2.
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Figure 10: Dynamic responses of hours, measured as indices, to a positive news shock
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This Figure presents the FADL estimated impulse responses of selected sectoral average weekly hours indices (AWH

indices) and total hours indices (HOURS indices), in growth, to a positive news shock as identified by block ordering

assumptions (BO3) in Example 2.
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