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Résumé / Abstract

Nous survolons la littérature de l’estimation non-paramétrique de
modèles de titres dérivés. En particulier, nous analysons des options sur actions en
partant d’une approche qui n’impose pas de restrictions théoriques, telles des
restrictions d’absence d’arbitrage, et qui est donc purement statistique. Par la suite
nous présentons des méthodes qui prennent avantage des restrictions a priori
fournies par la théorie.

In this paper, we survey some of the recent nonparametric estimation
methods which were developed to price derivative contracts. We focus on equity
options and start with a so-called model-free approach which involves very little
financial theory. Next we discuss nonparametric and semi-parametric methods
of option pricing and illustrate the different approaches.
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1 Introduction

Derivative securities are widely traded �nancial instruments which in-
herit their statistical properties from those of the underlying assets and
the features of the contract. The now famous Black and Scholes (1973)
formula is one of the few cases where a call option is priced according
to an analytical formula and applies to European-type contracts written
on a stock which follows a Geometric Brownian Motion. The formula
can be derived via a dynamic hedging argument involving a portfolio
of a riskless bond and the underlying stock (see e.g., Du�e (1996) for
more details). Strictly speaking the restrictive assumptions underlying
the so-called Black-Scholes economy are rarely met. Indeed, among the
violations one typically encounters and cites are: (1) volatility is time-
varying, (2) trading is not costless or faces liquidity constraints, (3)
interest rates may be stochastic, (4) the stock has dividend payments,
etc. It should also be noted that many derivative securities traded on
exchanges and over-the-counter are not \plain vanilla" but feature devi-
ations from the basic European call contract design. In particular, some
contracts feature early exercise privileges, i.e. so-called American-type
options, some involve caps or 
oors, some involve multiple securities like
swaps or quanto options, while others are written on �xed income se-
curities instead of stocks, etc. Obviously, there are many extensions of
the Black-Scholes model which take into account some of the deviations
one encounters in practice either in terms of assumptions or contract
design. In most cases, however, there is no longer an elegant analytical
formula and the contract must by priced via numerical methods. Very
often there are limitations to these numerical methods of approximation
as well since they remain very speci�c and inherit many of the afore-
mentioned restrictions which apply to the Black-Scholes model. These
are some of the motivating reasons why statistical nonparametric meth-
ods are applied to option pricing. Indeed, these methods are appealing
for the following reasons: (1) the formula is known but too complex
to calculate numerically or (2) the pricing formula is unknown and (3)
there is an abundance of data which makes the application of nonpara-
metric methods attractive. The �rst applies for instance to the case of
American-type options with stochastic volatility or barriers, to interest
rate derivative security pricing, to \look back" options, etc. The sec-
ond applies because of incompleteness of markets, trading frictions or
else the desire to leave unspeci�ed either the stochastic properties of the
underlying asset and/or the attitudes of agents towards risk.

There are a multitude of nonparametric methods, see e.g., Silverman
(1986) for an introduction to the statistical literature on the subject.
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In addition there are many ways to tackle the pricing of options via
nonparametric methods. Moreover, there are many di�erent types of
option contracts, some of which require discussion of special features
like early exercise decisions in the case of American options. Given the
large number of possibilities and the multitude of methods we have to be
selective in our survey of methods and applications. The literature is also
rapidly growing. Recent papers include A��t-Sahalia (1993, 1996), A��t-
Sahalia and Lo (1995), Baum and Barkoulas (1996), Bossaerts, Hafner
and H�ardle (1995), Broadie, Detemple, Ghysels and Torres (1995,1996),
Elsheimer et al. (1995), Ghysels and Ng (1996), Gouri�eroux, Monfort
and Tenreiro (1994, 1995), Gouri�eroux and Scaillet (1995), Hutchinson,
Lo and Poggio (1994), Stutzer (1995), among others. To focus the survey
we will restrict our attention only to options on equity.

We may be tempted to exclude any a priori economic knowledge
from our econometric analysis and solely rely on the brute force of non-
parametric techniques. This is the so-called model-free approach. These
nonparametric methods and their use in the context of option pricing
will be presented in section 2. They mainly consist of estimating the
relation between the dependent variable (usually the option price) and
explanatory variables using nonparametric regression techniques. The
function characterizing the relationship to be estimated is chosen in a
family of loosely de�ned functions according to an appropriate selection
criterion. However, the application of these standard methods in the
context of option pricing raises di�culties, some which are not easy to
overcome. This is one of several reasons why we may prefer to intro-
duce some restrictions imposed by economic theory. These restrictions
are quite often very mild and appear to be sensible, and they can be
of great help to eliminate some of the di�culties met in the model-free
approach. From a statistical point of view, these restrictions also call for
other types of nonparametric methods, such as the nonparametric spec-
i�cation and estimation of equivalent martingale densities. This will be
discussed in section 3.

Despite the fact that the Black-Scholes (henceforth BS) framework
fails to describe the behavior of call prices or the exercise policy of in-
vestors when contracts are of American type, it still is the most widely
used formula among practitioners. For instance, although it is believed
that underlying stock prices are not represented by a log-normal di�u-
sion because of time-varying volatility, the BS formula is used to measure
this instantaneous variance, even though a necessary condition for the
BS formula to be valid is that volatility is constant. The primary appeal
of the BS formula is its simplicity and the believe among practitioners
that it captures the variables relevant to price option contracts. There-
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fore, following the practitioner, an econometrician may �nd it convenient
to use the BS formula as a benchmark for his analysis. In this context,
nonparametric statistical techniques provide a way of �lling the gap be-
tween the Black-Scholes and the real world. As we will show in section
4, these methods can be called upon to \correct" the BS formula so that
it can adequately describe the behavior of observed series.

2 Nonparametric Model-free Option Pric-

ing

In this section we present the simplest of all possible methods, which is
probably also the purest in a statistical sense as it involves very little
�nancial theory. Suppose we have a large data set with option prices and
the features of the contracts such as strike, time to expiration, etc. and
data of the underlying security. Such data sets are now commonly found
and distributed to the academic and �nancial communities. Formally, a
call is priced via:

�t = f1(St;K; T; t;Xt); (2.1)

where �t is the option price and St the price of the underlying asset both
at time t; K the exercise price of the contract and T its expiration date
and �nally Xt is a vector of variables a�ecting the price of the option
contract. The latter may include underlying asset prices prior to t; as for
instance in non-Markovian settings and/or latent variables which appear
in stochastic volatility models. For the moment we ignore the fact that
several contracts are listed on a daily basis which in principle should
require a panel structure instead of a single time series. In section 3
we will say more about panel structures. The pricing functional f1 is
assumed unknown, only its arguments are suggested by the setup of the
contract.1 The purpose of applying nonparametric statistical estimation
is to recover f1 from the data. Obviously, this can only be justi�ed if
the estimation is applied to a situation where the regularity conditions
for such techniques are satis�ed. To discuss this let us brie
y review
the context of nonparametric estimation. In general, it deals with the
estimation of relations such as

Yi = g(Zi) + ui ; i = 1; : : : ; n; (2.2)

where, in the simplest case, the pair ((Yi; Zi); i = 1; : : : ; n) is a family
of i.i.d. random variables, and E(ujZ) = 0; so that g(z) = E(Y jZ = z):

1 Nonparametric techniques for selecting the arguments of a nonparametric regres-
sion function have recently been proposed by A��t-Sahalia, Bickel and Stoker (1995),
Gouri�eroux, Monfort and Tenreiro (1994), Lavergne and Juong (1996) among others.

3



The error terms ui; i = 1; : : : ; n; are assumed to be independently dis-
tributed, while g is a function with certain smoothness properties: Sev-
eral estimation techniques exist, including kernel-basedmethods, smooth-
ing splines, orthogonal series estimators such as Fourier series, Hermite
polynomials and neural networks, among many others. We will focus
here on the kernel-based methods for the purpose of exposition. Kernel
smoothers produce an estimate of g at Z = z by giving more weight
to observations (Yi; Zi) with Zi \close" to z: More precisely, the tech-
nique relies on a kernel function, K; which acts as a weighting scheme
(it is usually a probability density function, see Silverman (1986, p. 38))
and a smoothing parameter � which de�nes the degree of \closeness" or
neighborhood. The most widely used kernel estimator of g in (2.2) is the
Nadaraya-Watson estimator de�ned by

ĝ�(z) =

Pn

i=1K
�
Zi�z
�

�
YiPn

i=1K
�
Zi�z
�

� ; (2.3)

so that
�
ĝ�(Z1); : : : ; ĝ�(Zn)

�0
=WK

n (�)Y; where Y = (Y1; : : : ; Yn)
0 and

WK
n is a n� n matrix with its (i; j)-th element equal to

K
�
Zj�Zi

�

��Pn

k=1K
�
Zk�Zi

�

�
: WK

n is called the in
uence matrix as-

sociated with the kernel K:
The parameter � controls the level of neighboring in the following

way. For a given kernel function K and a �xed z; observations (Yi; Zi)
with Zi far from z are given more weight as � increases; this implies
that the larger we choose �; the less ĝ�(z) is changing with z: In other
words, the degree of smoothness of ĝ� increases with �: As in parametric
estimation techniques, the issue here is to choose K and � in order to
obtain the best possible �t. A natural measure of the goodness of �t

at Z = z is the mean squared error (MSE(�; z) = E
h�
ĝ�(z)� g(z)

�2i
);

which has a bias/variance decomposition similar to parametric estima-
tion. Of course both K and � have an e�ect on MSE(�; z); but it is
generally found in the literature that the most important issue is the
choice of the smoothing parameter.2 Indeed, � controls the relative
contribution of bias and variance to the mean squared error; high �s
produce smooth estimates with a low variance but a high bias, and con-
versely. It is then crucial to have a good rule for selecting �: Several
criteria have been proposed, and most of them are transformations of

2For a given �; the most commonly used kernel functions produce more or less
the same �t. Some measures of relative e�ciency of these kernel functions have been
proposed and derived, see H�ardle and Linton (1994, p. 2303) and Silverman (1986,
section 3.3.2).
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MSE(�; z): We may simply consider MSE(�; z); but this criterion is lo-
cal in the sense that it concentrates on the properties of the estimate at
point z: We would generally prefer a global measure such as the mean

integrated squared error de�ned by MISE(�) = E
hR �

ĝ�(z)� g(z)
�2
dz
i
;

or the sup mean squared error equal to supzMSE(�; z); etc... The most
frequently used measure of deviation is the sample mean squared error
Mn(�) = (1=n)

Pn
i=1 [ĝ�(Zi)� g(Zi)]

2
!(Zi); where !( � ) is some known

weighting function. This criterion only considers the distances between
the �t and the actual function g at the sample points Zi: Obviously,
choosing � = ~�n � argmin

�
Mn(�) is impossible to implement since g

is unknown. The strategy consists of �nding some function mn( � ) of �

(and of
�
(Yi; Zi); i = 1; : : : ; n

�
) whose argmin is denoted �̂n; such that

j~�n � �̂nj �! 0 a.s. as n ! 1: For a review of such functions mn;

see H�ardle and Linton (1994, section 4.2).3 The most widely used mn

function is the cross-validation function

mn(�) = CVn(�) �
1

n

nX
i=1

h
Y =i �f̂

(�i)

� (Zi)
i2
;

where ĝ
(�i)
� (z) is a Nadaraya-Watson estimate of g(z) obtained according

to (2.3) but with the i-th observation left aside. Craven and Wahba
(1979) proposed the generalized cross-validation function with

mn(�) = GCVn(�) �
n�1

Pn

i=1

=
[Yi � ĝ�(Zi)

where Wn is the in
uence matrix.4

Another important issue is the convergence of the estimator ĝ
�̂n
(z):

Concerning the Nadaraya-Watson estimate (2.3), Schuster (1972) proved
that under some regularity conditions, ĝ

�̂n
(z) is a consistent estimator

of g(z) and is asymptotically normally distributed.5 Therefore when

the argmin �̂n of mn(�) is found in the set �n (see footnote 5), we

3See also Silverman (1986, section 3.4), Andrews (1991) and Wand and Jones
(1995).

4This criterion generalizes CVn since GCVn can be written as n�1
Pn

i=1

h
Yi �

ĝ
(�i)
�

(Zi)
i2
aii; where the aiis are weights related to the in
uence matrix. Moreover,

GCVn is invariant to orthogonal transformations of the observations.
5 The regularity conditions bear on the smoothness and continuity of g; the prop-

erties of the kernel function K; the conditional distribution of Y given Z; the marginal
distribution of Z; and the limiting behavior of �̂n: The class of �̂ns which satisfy these
regularity conditions is denoted �n:
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obtain a consistent and asymptotically normal kernel estimator ĝ
�̂n
(z)

of g(z); which is optimal in the class of the consistent and asymptotically
Gaussian kernel estimators for the criterion Mn(�):

6

When the errors are not spherical, the kernel estimator remains con-
sistent and asymptotically normal. The asymptotic variance is a�ected,
however, by the correlation of the error terms. Moreover, the objective
functions for selecting � such as CVn or GCVn do not provide optimal
choices for the smoothing parameters. It is still not clear what should
be done in this case to avoid over- or undersmoothing.7 One solution
that has suggested consists in modifying the selection criterion (CVn
or GCVn) in order to derive a constant estimate of Mn: An alternative
strategy tries to orthogonalize the error term and apply the usual selec-
tion rules for �:When the autocorrelation function of u is unknown, one
has to make the transformation from sample estimates obtained from a
�rst step smooth. In that view, the second alternative seems to be more
tractable. Altman (1987, 1990) presents some simulation results which
show that in some situations, the pre-whitening method seems to work
relatively well. However there is no general result on the e�ciency of the
procedure. See also H�ardle and Linton (1994, section 5.2) and Andrews
(1991, section 6).

When the observations (Y; Z) are drawn from a stationary dynamic
bivariate process, Robinson (1983) provides conditions under which ker-
nel estimators of regression functions are consistent. He also gives some
central limit theorems which ensure the asymptotic normality of the esti-
mators. The conditions under which these results are obtained have been
weakened by Singh and Ullah (1985). These are mixing conditions on
the bivariate process (Y; Z): For a detailed treatment, see Gy�orfy et al.
(1989). This reference (chap. 6) also discusses the choice of the smooth-
ing parameter in the context of nonparametric estimation from time se-
ries observations. In particular, if the error terms are independent, and
when �̂n = argmin

�2�n
CVn(�); then under certain regularity conditions

�̂n is an optimal choice for � according to the integrated squared error,
ISE(�) =

R
[ĝ�(z)� g(z)]

2
dz (see Gy�orfy et al. (1989, corollary 6.3.1)).

Although the function CVn(�) can produce an optimal choice of � for
the criterion Mn(�) in some particular cases (such as the pure autore-
gression, see H�ardle and Vieu (1992) and Kim and Cox (1996)), there is
no general result for criterions such as MISE(�) or Mn(�): For studies

6By de�nition, the choice � = ��n is optimal for the criterion D(�) if
D(��n)= inf�2�n D(�)

a.s.
�!
n!1 1:

7Altman (1990) shows that when the sum of the autocorrelations of the error term
is negative (positive), then the functions CVn and GCVn tend to produce values for
� that are too large (small), yielding oversmoothing (undersmoothing).
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of the performance of various criteria for selecting � in the context of
dependent data, see Cao et al. (1993).

In applications involving option price data we have correlated as well
as nonstationary data. Indeed St, which is one of the arguments of f1 in
(2.1), is usually not a stationary process. Likewise, variables entering Xt

may be nonstationary as well. Moreover, characterizing the correlation
in the data may also be problematic as well. Indeed, the relevant time
scale for the estimation of f1 is not calendar time, as in a standard time
series context, but rather the time to expiration of the contracts which
are sampled sequentially through the cycle of emissions. It becomes even
more di�cult once it is realized that at each time t several contracts are
listed simultaneously and trading may take place only in a subset of
contracts. Some of these technical issues can be resolved. For instance,
while S is nonstationary the variable (S=K) is found to be stationary as
exercise prices bracket the underlying asset price process. This suggests
an alternative formulation of (2.1) as �t = f2(St=K;K; T; t;Xt). More-
over, under mild regularity conditions f1 is homogenous of degree one
in (S;K) (see Broadie, Detemple, Ghysels and Torr�es (1996) or Garcia
and Renault (1995)). Under such conditions we have:

�t=K = f3(St=K; T; t;Xt): (2.4)

A more di�cult issue to deal with is the correlation in the data. In-
deed, while it easy to capture the serial correlation in calendar time it is
tedious to translate and characterize such dependence in a time to matu-
rity scale (see Broadie, Detemple, Ghysels and Torr�es (1996) for further
discussion). Furthermore, the panel data structure of option contracts
even worsen the dependence characteristics. Finally, we also face the so-
called curse of dimensionality problem. Nonparametric kernel estimators
of regression functions Y = g(Z), where Z is a vector of dimension d; as
f3 in equation (2.4), are local smoothers in the sense that the estimate
of g at some point z depends only on the observations (Zi; Yi) with Zi in
a neighborhood N (z) of z: The so-called curse of dimensionality relates
to the fact that, if we measure the degree of localness of a smoother by
the proportion of observations (Zi; Yi) for which Zi is in N (z); then the
smoother becomes less local when d increases, in the sense that for a
�xed degree of localness N (z) increases in size as the dimension of Z
increases. Consequently, the precision of the estimate deteriorates as we
add regressors in g, unless the sample size increases drastically.8 This
problem arises in our context as Xt may contain many variables. A good

8For more details on the curse of dimensionality and how to deal with it, see Hastie
and Tibshirani (1990), Scott (1992, chap. 7) and Silverman (1986, p. 91 { 94).
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example is the case of nonparametric estimation of option pricing mod-
els with stochastic volatility, a latent variable which requires �ltering
from past squared returns of the underlying asset (see below for further
discussion).

The homogeneity property of option prices helps to reduce the di-
mension of the pricing function f1 by eliminating one of its arguments.
Moreover, in most pricing models, the expiration date T and the cal-
endar date t a�ect �t through their di�erence � � T � t; a variable
called time to expiration or alternatively time to maturity. Therefore
the nonparametric regression to be estimated becomes:

�t=K = f3(St=K; �;Xt): (2.5)

Let us elaborate further now on the speci�cation of the vector of
variables Xt a�ecting the option price. Examples of variables that might
enter Xt are series such as random dividends or random volatility. Div-
idend series are observable while volatility is a latent process. This
raises a number of issues we need to discuss here as there are funda-
mental di�erence between the two cases. In principle, one can �lter
the latent volatility process from the data, using series on the underly-
ing asset. Obviously we need a parametric model if we were to do this
in an explicit and optimal way. This would be incompatible however
with a nonparametric approach. Hence, we need to proceed somehow
without making speci�c parametric assumptions. In principle, one could
consider a nonparametric �t between

�
S=K

�
t
and past squared returns

(logSt�j � logSt�j�1)
2; j = 1; : : : ; L; for some �nite lag L; resulting in

the following L+ 1-dimensional nonparametric �t:

�t=K = f3(St=K; T; t; (logSt�j � logSt�j�1)
2; j = 1; 2; : : : ; L); (2.6)

It is clear that this approach is rather unappealing as it would typi-
cally require a large number of lags, say L = 20 with daily observations.
Hence, we face the curse of dimensionality problem discussed before. A
more appealing way to proceed is to summarize the information con-
tained in past squared returns (possibly the in�nite past). Broadie et al.
(1996) consider three di�erent strategies using: (a) historical volatilities,
(b) EGARCH volatilities and (c) implied volatilities. Each approach
raises technical issues, some of which are relatively straightforward to
deal with, while others are more tedious. For example, using GARCH
or EGARCH models raises several issues: (1) are equations of EGARCH
models compatible with the unspeci�ed asset return processes generat-
ing the data? (2) how does parameter estimation of the GARCH process
a�ect nonparametric inference? and (3) how do the weak convergence
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results also a�ect the nonparametric estimation? Broadie et al. (1996)
discuss the details of these issues and illustrate with an empirical exam-
ple that the three aforementioned approaches yield the same results.

The nonparametric regression f3 discussed so far does not rely, at
least directly, on a theoretical �nancial model. Yet, it is possible to
use the nonparametric estimates to address certain questions regarding
the speci�cation of theoretical models, namely questions which can be
formulated as inclusion or exclusion of variables in the nonparametric
option pricing regression. We may illustrate this with an example drawn
from Broadie et al. (1996). For European type options there has been
considerable interest in formulating models with stochastic volatility (see
e.g. Hull and White (1987) among many others) while there has been
relatively little attention paid to cases involving stochastic dividends.
It is quite the opposite with American type options. Indeed, the widely
traded S&P100 Index option or OEX contract has been extensively stud-
ied, see in particular Harvey and Whaley (1992), with exclusive emphasis
on stochastic dividends (with �xed volatility). This prompted Broadie
et al. (1996) to test the speci�cation of OEX option pricing using the
nonparametric methods described in this section combined with tests
described in A��t-Sahalia, Bickel and Stoker (1995). Hence, they tested
the relevant speci�cation of the vector Xt whether it should include divi-
dends and/or volatility (where the latter is measured via one of the three
aforementioned proxies). They found, in the case of the OEX contract
that both stochastic volatility and dividends mattered. It implies that
either ignoring volatility or dividends results in pricing errors, which can
be signi�cant as Braodie et al. show. This is an important illustration
on how to use this so-called model-free approach to address speci�cation
of option pricing without much �nancial theory content.

To conclude we should mention that there are several applications of
the techniques discussed here which can be found in A��t-Sahalia and Lo
(1995) as well as Broadie, Detemple, Ghysels and Torr�es (1995,1996).
The former study the European option on the S&P500 contract, while
the latter study the American contract on the S&P100. By using slightly
di�erent techniques, Hutchinson, Lo and Poggio (1994) achieve the same
objective.

3 Nonparametric speci�cation of equivalent

martingale measures

An obvious di�culty for the model-free option pricing setup in the previ-
ous section is the so-called panel structure of option prices data. Namely,
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one typically observes several simultaneously traded contracted (with
various exercise prices and maturity dates) so that the option pricing
formula of interest must involve two indexes:

�it = f(St;Ki; Ti; t;Xit) (3.1)

where i = 1; 2; : : : ; It describes the (possibly large) set of simultaneously
quoted derivative contracts at time t written on the same asset (with
price St at time t).

9 In such a case, nonparametric model free option
pricing becomes quickly infeasible since it is not able to capture a large
set of crucial restrictions implied by arbitrage. Indeed, as stressed by
Merton (1973), any option pricing research must start from deducing
a set of restrictions which are necessary conditions for a formula to be
consistent with a rational pricing theory. Fitting option pricing formula
using purely (model-free) statistical methodologies therefore forgoes im-
posing an important feature of derivative asset markets, namely: If a
security A is dominant over a security B (that is the return on A will be
at least as large as on B in all states of the world and exceed the return
on B for some states), then any investor willing to purchase security B
would prefer to purchase A. A �rst example of restrictions stressed by
Merton (1973) for European call options prices are:

K2 > K1 ) f(St;K2; T; t;Xit) � f(St;K1; T; t;Xit)

and, if no payouts (e.g., dividends) are made to the underlying asset
(e.g., a stock) over the life of the option

f(St;K; T; t;Xt) � max[0; St �K B(t; T )];

where B(t; T ) is the price of a riskless pure discount bond which pays
one dollar T � t periods from now. date t):

The only way for a pricing scheme to take into account the necessary
conditions for a formula to be consistent with a rational pricing theory is
to incorporate at a convenient stage the requirement that the derivative
asset price f(St;Ki; Ti; t;Xit) has to be related to its terminal payo�, for
instance max[0; ST �K] in case of an European call option. Fortunately,
modern derivative asset pricing theory provides us a versatile tool to
do this using equivalent martingale measures. Roughly speaking, the
Harrison and Kreps (1979) theory ensures the equivalence between the

9For instance Dumas, Fleming and Whaley (1996) consider S&P500 Index option
prices traded on the Chicago Board Options Exchange (CBOE) during the period
June 1988 through December 1993. After applying three exclusionary criteria to
avoid undesirable heterogeneity, they �nd quotes for an average of 44 option series
during the last half-hour each Wednesday.
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absence of arbitrage and the existence of a probability measure Q with
the property that the discounted price processes are martingales under
Q. Hence, for a European option with strike K and maturity T we have:

f(St;K; T; t;Xt) = B(t; T )EQ
�
(ST �K)+jXt; St

�
; (3.2)

where the expectation operator EQ is de�ned with respect to the pricing
probability measure Q.10 The vector of variable Xt assumes here again
the role it played in the previous section, namely a set of state variables
relevant to the pricing of the option. The fundamental di�erence between
the nonparametric methods described in the previous section and those
which rely on the Harrison and Kreps theory is that the nonparamet-
ric statistical inference focuses on the conditional expectation operator
EQ

�
� jXt; St

�
instead of the pricing function f(St;K; T; t;Xt). It is im-

portant to note of course that in general the Q-conditional probability
distribution of ST given Xt; St coincides with the Data Generating Pro-
cess (DGP characterized by a probability measure denoted P hereafter).
Early contributions assumed that:

EQ
�
� jXt; St

�
= EP

�
� jXt; St

�
(3.3)

(see for instance Engle and Mustafa (1992) or Renault and Touzi (1996))
but recently several attempts were made to estimate EQ

�
� jXt; St

�
with-

out assuming that Q coincides with P (see e.g. Rubinstein (1994), Abken
et al. (1996) and A��t-Sahalia and Lo (1995)). For instance, it is now
well-known (see e.g., Breeden and Lutzenberger (1978) and Huang and
Litzenberger (1988) page 140) that there is a one-to-one relationship
between an European call option pricing function f(St; � ; T; t;Xt) as
a function of the strike price K and the pricing probability measure
QjXt; St via:

Q

�
ST

St
�
K

St

��Xt; St

�
= �

1

B(t; T )

@f

@K
(St;K; T; t;Xt): (3.4)

Hence observing European call option prices for any strike K, it is pos-
sible to recover the pricing probability measure Q j Xt; St or the corre-
sponding pricing operator EQ [ � jXt; St]. This forms the basis for con-
sistent nonparametric estimation of this operator without the restric-
tive assumption (3.3) and using options price data, not only time series
(t = 1; 2; : : : ; T ) but also cross-sections (i = 1; 2; : : : ; It).

10 For further details see e.g., Du�e (1996). We do not discuss here: (1) the
assumptions of frictionless markets which ensure the equivalence between the absence
of arbitrage and the existence of a such a pricing measureQ, and (2) the interpretation
of Q which is unique in case of complete markets and often called a \risk neutral
probability" when there is no interest rate risk.
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Such inference may be developed within two paradigms: Bayesian
(covered in a �rst subsection 3.1) or classical (subsection 3.2 below). In
the former we treat the probability distribution as a random variable,
hence the reference to Bayesian analysis. Obviously one needs to �nd
a 
exible class that covers a large set of pdf's. In section 3.1 we will
present such a class, which enables one to characterize the martingale
restrictions of option pricing as well as their panel structure. In section
3.2 we present another approach which builds on the estimation of option
pricing formulae presented in the previous section. Both approaches have
advantages as well as drawbacks which we will discuss.

3.1 Nonparametric Bayesian speci�cation of equiva-

lent martingale measures

The basic ideas presented in this section were introduced by Cl�ement,
Gouri�eroux and Monfort (1993) and extended more recently by Renault
(1996) and Patilea and Renault (1995).11 Let us reconsider a European
option with price �t(K) written as:

�t(K) = B(t; T )EQ
�
(ST �K)+jSt; Xt

�
= B(t; T )

Z
S

(sT �K)+Qt(dsT )
(3.5)

where S is the set of all possible values of St. First, we should note
that even when markets are complete, one may not observe the full
set of securities which complete the market and therefore one is not
able to determine unambiguously the pricing probability measure Qt. A
nonparametric Bayesian methodology views this measure as a random
variable de�ned on an abstract probability space (
; a; P ); taking values
in the set P(S) of all probability distributions on

�
S;B(S)

�
. If we denote

Qt( � ; !) as a realization of this random variable, then the option pricing
formula (3.5) becomes:

�t(K;!) = B(t; T )

Z
S

(sT �K)+Qt(dsT ; !): (3.6)

A good class of distributions to characterize the random probability Qt

is the Dirichlet process, which is a distribution on
�
P(S);B(P(S))

�
; in-

troduced by Ferguson (1973). More speci�cally: a random probability
� on

�
S;B(S)

�
is called a Dirichlet process with parameter �Q0

t where

11In this section we follow closely the analysis developed in Renault (1996) and
Patilea and Renault (1995).
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� > 0 and Q0
t 2 P(S) if, for any measurable partition B1; B2; : : : ; BL

of S, the random vector
�
�(B`); 1 � ` � L

�
has a Dirichlet distribution

with parameters
�
�Q0

t (B`); 1 � ` � L
�
: If � is a Dirichlet process with

parameter �Q0
t ; we write hereafter � ; Di(�Q0

t ).
12 We may give an

interpretation to Q0
t as a mean value of the process and to � as a pre-

cision of the process around this mean value. Large values of � make
the realizations of � more concentrated around Q0

t . For � =1 the real-
izations of the Dirichlet process are, with probability one, equal to Q0

t .
To elaborate on the moment properties and the asymptotic behavior of
Dirichlet processes let us consider a real-valued function f de�ned on S
and integrable w.r.t. Q0. If � ; Di(�Q0) we de�ne the random variable:

�(f) =

Z
S

f(s)�(ds; !)

It can be shown (see Cl�ement, Gouri�eroux and Monfort (1993)) that:

E
�
�(f)

�
= EQ0f

Var
�
�(f)

�
= (1 + �)�1VarQ0(f)

Cov
�
�(f1);�(f2)

�
= (1 + �)�1CovQ0(f1; f2)

Asymptotic normality has been established by Lo (1987). In particular
if �n ; Di(�nQ0) and �n !1;

p
�n
�
�n(f)�EQ0(f)

� L
�!N

�
0;VarQ0(f)

�
:

It proves that for � su�ciently large, that is for random errors around
the basic pricing model (de�ned by Q0) relatively small, one can charac-
terize their distribution by the �rst two moments as Cl�ement, Gouri�eroux
and Monfort (1993) did. Within this framework, we can introduce ran-
dom error terms around an option pricing model de�ned by Q0

t which
provides option prices:

e�t(K) = B(t; T )

Z
S

(sT �K)+Q0
t (dsT ) (3.7)

12It is worth recalling that the Dirichlet distribution is a multivariate extension
of the Beta distribution on [0,1]. More precisely, the Dirichlet distribution on the

simplex
n
(p1; p2; : : : ; pL); p` � 0;

P
p` = 1

o
is characterized by the pdf

g (p1; p2; : : : ; pL) =
�(�1 + �2 + : : :+ �L)

�(�1)�(�2) : : :�(�L)
p
�L�1�1

1 p
nL�1
L

;

where (�1; �2; :::; �L) are given nonnegative parameters.
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Let us assume for the moment that � and the parameters de�ning Q0
t

are included in the statistician's information set ISt at time t while
the trader's information set includes (for completeness) both ISt and
!. Then, if the pricing probability measure Qt is described by a Dirich-
let model around Q0

t , i.e., Qt

�� ISt ; Di(�Q0
t ), then using the properties

of Dirichlet processes we know that the expectation of �t(!) with respect

to the draw of ! is

e�t(K) = E!�t(K;!) = B(t; T )EQo
t (ST �K)+:

Hence, for a set of strike prices Kj ; j = 1; 2; : : : ; J; the random variables:

ut(Kj ; !) = �t(Kj ; !)� e�t(Kj)

are zero-mean error terms whose joint probability distribution�
ut(Kj ; !)

�
1�j�J

can be easily deduced from the properties of the Dirich-

let process. This can be used to characterize the joint probability dis-
tribution of error terms and especially their heteroskedasticity, auto-
correlation, skewness, kurtosis, etc., whatever the cross-sectional set of
option prices written on the same asset we observe (calls, puts, various
strike prices, various maturities . . . ). For the sake of simplicity of the
presentation let us consider a simple one-period model.13 First we will
randomize the risk-neutral probability around the lognormal distribution
of the Black-Scholes model. We suppose that B(t; T ) and � are known.
Let us introduce ~St as a latent price of the underlying asset which will
appear in the de�nition of the parameters of the Dirichlet process, more
precisely in Q0

t (we will justify the use of a latent
eSt later). The resulting

model then is:

Q0
t = LN

�
log ~St � logB(t; T )� �2(T � t)=2; �2(T � t)

�
;

ST
�� �Qt( � ; !); I

S
t ;
eSt� :;: Qt( � ; !);

Qt

�� eSt :;: Di(�Q0
t ):

(3.8)

In this context ST is what is usually called a sample of size one of the
Dirichlet process �, i.e. the conditional distribution of ST given the real-
ization Qt( � ; !), is Qt( � ; !). It can be shown (see Ferguson (1973)) that

the marginal distribution of ST is Q0
t . In this model, given eSt, the price

�t(K;!) of an European call option with maturity date T and strike K
is de�ned as in (3.6). In particular the stock price observed at time t is

13Extensions to more complicated multi-period models appear in Cl�ement,
Gouri�eroux and Monfort (1993) and Patilea and Renault (1995).
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St = St(!) = �t(0; !). With probability one, the observed price will not

coincide with the latent price eSt. We introduced ~St not only to make the
option pricing formula (3.6) coherent but also because it is an interesting
variable to be taken into account.14 Indeed, if we accept the existence
of non-synchronous trading, it is clear that agents willing to buy and
sell options have in mind a latent price of the underlying asset. This
price eSt can be viewed as a latent factor, which has various interpre-
tations previously encountered in the option pricing literature. Indeed,
Manaster and Rendleman (1982) argue for instance that \just as stock
prices may di�er, in the short run, from one exchange to another (. . . ),
the stock prices implicit in option premia may also di�er from the prices
observed in the various markets for the stock. In the long run, the trad-
ing vehicle that provides the greatest liquidity, the lowest trading costs,
and the least restrictions is likely to play the predominant role in the
market's determination of the equilibrium values of underlying stocks".
Moreover, \investors may regard options as a superior vehicle" for sev-
eral reasons like trading costs, short sales, margin requirements. . . Hence,
option prices involve implicit stock prices that may be viewed as the
option market's assessment of equilibrium stock values and may induce
a reverse causality relationship from option market to stock market.15

Henceforth we will write the models in terms of returns because this
setting is better suited for dynamic extensions. We can write (3.8) also

14In their paper Cl�ement, Gouri�eroux and Monfort (1993) neglected the incoherence
in their option pricing formula. They considered Q0

t based on the observed stock price
St. Thus, at time t, almost surely, they have two stock prices: St and �t(0; !).
15See also Longsta� (1995) for a related interpretation. While Manaster and

Rendleman (1982) and Longsta� (1995) compute implicit stock prices through the
BS option pricing formula, Patilea, Ravoteur and Renault (1995) propose an econo-
metric approach in a Hull and White (1987) (HW) setting which is also based on
the concept of stock prices implicit in option prices but without choosing between
the above theoretical explanations. Indeed, following the state variables methodology
set forth by Renault (1996) they argue that if we observe mainly two liquid option
contracts at each date: one near the money and another one more speculative (in or
out) we need to introduce two unobserved state variables: the �rst one is stochas-
tic volatility (to apply HW option pricing) and the second one is an \implicit" stock
price which is taken into account to apply the HW option pricing formula. They show
that even a slight discrepancy between St and eSt (as small as 0.1%, while Longsta�
(1995) documents evidence of an average discrepancy of 0.5%) may explain a sensible
skewness in the volatility smile.
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as follows:

Q0
t = LN

�
� logB(t; T )� �2(T � t)=2; �2(T � t)

�
;

ZT
def
=

ST
~St

�� �Qt( � ; !); I
S
t ;

eSt� :�: zT �� �Qt( � ; !
�
:;: Qt( � ; !);

Qt

�� ~St :;: Di(�Q0
t ):

The distribution of ZT given eSt is Q0
t : We should note that this

distribution does not depend on ~St and therefore, the option pricing
formula will be homogeneous with respect to (eSt;K), an issue which was
deemed important in section 2 to conduct statistical analysis. Indeed,
given ~St the price of a call option written in (3.6) becomes:

�t(K;!) = �t(eSt;K; !) = B(t; T )

Z
S

(eStzT �K)+Qt(dzT ; !)

= B(t; T )eSt
Z
S

(zT �K= ~St)
+Qt(dzT ; !):

(3.9)
Using the properties of the Dirichlet process functionals we can compute
the moments (conditionally on eSt) of �t(K;!) :

E
�
�t(K;!)

�
= BS(eSt;K; �);

Var
�
�t(K;!)

�
= (1 + �)�1 eS2tB(t; T )2

h
EQ0

t (f2)�
�
EQ0

t (f)
�2i

;

Cov
�
�t(K1; !);�t(K2; !)

�
= (1 + �)�1 eS2tB(t; T )2�h

EQ0

t (f1f2)�EQ0

t (f1)E
Q0

t (f2)
i
;

where f(z) =

�
z �

K

eSt
�+

and fi(z) =

�
z �

Ki

~St

�+
; i = 1; 2:

This shows, as noted before, that the heteroskedasticity and the au-
tocorrelation structure of error terms around the BS price depend in a
highly complicated nonlinear way on the underlying characteristics of
the options: strike prices, times to maturity, etc.16 We also obtain the
price of the stock at time t as

St = St(!) = B(t; T )eSt
Z
S

zT�(dzT ; !)
def
= eStmt(!):

16Cl�ement, Gouri�eroux and Monfort (1993) provide in detail the explicit formulas
and suggest a simulation-based methodology.
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The error term mt(!) is a functional of a Dirichlet process of param-
eter �LN

�
� �2(T � t)=2; �2(T � t)

�
and:

E
�
mt(!)

�
= 1; Var

�
mt(!)

�
= (�+ 1)�1

�
e�

2(T�t) � 1
�

Moreover, for large values of �, the observed price St, given eSt, is ap-
proximatively normally distributed with mean equal to eSt and varianceeS2tVar�mt(!)

�
. Hence, one may choose � in such way that the variance

of St does not depend on T � t.
A �rst extension of (3.8) may be obtained by considering a Dirichlet

process around the risk-neutral probability of Merton's (1973) model.
For this consider:

V T
t =

Z T

t

�2udu:

Conditionally on V T
t ; one can draw Dirichlet realizations around the

lognormal distribution LN
�
� logB(t; T )� V T

t =2; V
T
t

�
and therefore:

Q0
t = Q0

t (V
T
t ) = LN

�
� logB(t; T )� V T

t =2; V
T
t

�
;

ZT =
STeSt

�� Qt( � ; !); I
S
t ; �t; V

T
t ;

eSt;� VT
�� Qt( � ; !); Qt( � ; !);

Qt

�� ��t; V T
t ;

eSt� :;: Di(�Q0
t ):

One can draw �rst V T
t from a conditional distribution, given �t (to be

speci�ed). As a result we obtain that Qt

�� �t is a mixture of Dirichlet

processes.17 The call option formula, given eSt; V T
t and �t, does not

depend on V T
t and �t and is exactly as in (3.9):

�t(K;!) = �t(eSt;K; !) = B(t; T )eSt
Z
S

(zt�K=eSt)+Qt(dzT ; !): (3.10)

The mean of �t(K;!), conditionally on eSt and �t, is
E
�
�t(K;!)

�
= E�t

�
BS( ~St;K; V

T
t )
�

17See Antoniak (1974) for the de�nition and the properties of the mixtures of
Dirichlet processes. The fact that a mixture of Dirichlet processes is conditionally
a Dirichlet process allows one to carry over many properties of Dirichlet processes

to mixtures. Moreover, one can show that any random probability on
�
S;B(S)

�
can be approximated arbitrarily closely in the sense of the weak convergence for
distributions, by a mixture of Dirichlet processes. Hence, the richness of the class of
mixtures of Dirichlet processes suggests that it enables us to build general models.
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Since (3.10) is very similar to several well-known extensions of the BS
option pricing model, including the Merton (1976) jump di�usion and
Hull and White (1987) stochastic volatility models, we may conclude
that the class of mixtures of Dirichlet processes allows us to introduce
error terms around any extension of the BS model where unobserved
heterogeneity (like stochastic volatility) has been introduced.

To conclude, this analysis suggests that we should distinguish two
types of option pricing errors: (1) errors due to a limited set of unob-
served state variables like stochastic volatility, stochastic interest rate,eSt, and (2) errors to make the model consistent with any data set. In
the �rst approach state variables are introduced as instruments to de�ne
mixtures of Dirichlet processes around the \structural" option pricing
model. Therefore, the suggested approach is not fully model-free since
the model is built around a structural model de�ned by Q0

t , with a pa-
rameter � which controls the level of neighboring around this model.18

This is the price to pay to take into account arbitrage restrictions. We
have therefore only two solutions. Either we adopt a semiparametric
approach by introducing a nonparametric disturbance around a given
probability measure Q0

t . While this was done above in a Bayesian way,
it will be done in section 4 in a classical way through the concept of
functional residual plots. Alternatively we consider a genuine nonpara-
metric estimation of the equivalent martingale measure. This is the issue
addressed in the following subsection 3.2.

So far the Bayesian approach as discussed in this section is not yet
fully explored in empirical work. The only attempt that we know of is
the work of Jacquier and Jarrow (1995) who applied Bayesian analysis
to BS option pricing models. Their analysis does not, however, take
full advantage of the complex error structure which emerged from the
Dirichlet process speci�cation.

3.2 Nonparametric estimation of state-price densi-

ties implicit in �nancial asset prices

We observed in (3.4) that the risk neutral probability distribution or
\state price density" can be recovered from taking derivatives of Euro-
pean calls with respect to their strike price. Kernel estimation techniques
provide an estimate of the pricing function f . Provided that they exist,
it is straightforward to recover estimates of the derivatives of f from f̂ :

18This parameter � must not be confused with the smoothing parameter � in
section 2, which was also devised to control the level of neighboring, but with a very
di�erent concept of \closeness" or \neighborhood".
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This is particularly important for option valuation in the context of com-
plete markets with no arbitrage opportunities. In this situation, several
of the partial derivatives of the pricing function are of special interest.
One of them is the \delta" of the option de�ned as � � @�=@S:19 An-
other derivative of special interest is @2�=@K2 since it is related by (3.4)
to the state price density.

The use of kernel methods for deriving estimates of � and the state
price density is due to A��t-Sahalia and Lo (1995). Many of the issues
raised in section 2 regarding kernel estimation and the nonstationarity
of the data, the dependence of the data etc. apply here as well of course.
In addition, some additional issues should be raised as well. Indeed, we
noted in section 2 that kernel smoothing is based on a certain approxi-
mation criterion. This approximation criterion applies to the estimation
of the function f but not necessarily its derivatives. The bandwidth se-
lection a�ects the smoothness of the estimate f̂ and therefore indirectly
its derivatives. Since the ultimate objective is to estimate the derivatives
of the function rather than the function itself it is clear that the choice
of objective function and approximation criterion of standard kernel es-
timation are not appropriate. It is a drawback of this approach that still
needs to be investigated in greater detail.

Up to now, we presented two nonparametric approaches to the option
valuation problem. The �rst one, the pure nonparametric pricing, makes
very little use of the economic or �nancial dimensions of the problem and
relies almost exclusively on the statistical exploitation of market data.
The second one incorporates elements of a rational option pricing theory:
it exploits the equivalence between the absence of arbitrage assumption
and the existence of a risk neutral probability measure to derive the
pricing formula. From this relation, it appears that the parameter to be
estimated is the risk neutral density. The next section presents a third
way which can be seen as a blend of the previous approaches.

4 Extended Black and Scholes models and

objective driven inference

Practitioners recognize that the assumptions of constant dividends, in-
terest rates and volatility of the Black and Scholes (BS) model are not
realistic. The most revealing evidence of this is the systematic use of
the BS formula as a pricing and hedging tool by practitioners through

19This quantity is useful as it determines the quantity of the underlying stock an
agent must hold in a hedging portfolio that replicates the call option.
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the so-called BS implicit volatility, that is the volatility measure which
equates the BS option valuation formula to the observed option price:

�t = BS (St; �;K; r; �t(St;K)) ; (4.1)

where �t denote the observed call price at time t and �t(St;K) the cor-
responding BS implicit volatility. This practice can be assimilated in a
forecasting rule where the BS formula is used as a black box which inte-
grates the time varying and stochastic environment through the volatility
parameter. Since the BS formula is inherently misspeci�ed we can think
of modifying the underlying model so that it incorporates these new fea-
tures, such as stochastic volatility. However such attempts lead to very
complex models which usually do not admit a unique and closed form
solution except for some special cases.

Taking into account that (1) analytic extensions of BS often pose
many computational di�culties, (2) the BS formula is not a valid mod-

eling tool, (3) the BS formula is used as a prediction tool, Gouri�eroux,
Monfort and Tenreiro (1994, 1995), henceforth GMT, present the sta-
tistical foundations of dealing with a misspeci�ed BS model. We �rst
present the GMT approach in its general formulation and then show how
it can be applied to model modi�ed BS formula.

transition

4.1 Kernel M-estimators

To discuss the generic setup of kernel M-estimators, let us suppose that
we observe a realization of length T of a stationary stochastic process
f(Zt; Yt) : t 2 Zg and that the parameter vector parametrizes the con-
ditional distribution of Yt given Ft = �(Zs; Ys�1; s � t): The estimation
strategy proposed by GMT tries to approximate a functional parameter
vector �(Ft) implicitly de�ned as the solution of:

min
�

E0 [ (Ut; �)jFt] ; (4.2)

where, Ut = (Zt; Yt; Yt�1);  is an objective function, and E0( � jFt)
denotes the conditional expectation with respect to the unknown true
conditional distribution of Ut given (Zs; Ys�1; s � t): Let X be a d-
dimensional process such that the solution �(Xt) of

min
�
E0 [ (Ut; �)jXt] (4.3)

coincides with that of (4.2). GMT suggest approximating (4.3) by

min
�

1

T

TX
t=1

1

hdT
K

�
xt � x

hT

�
 (ut; �); (4.4)
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where K (�) is a kernel function, and hT is the bandwidth, depending on
T; the sample size. Estimators obtained according to (4.4) are denoted

�̂T (s) and called kernel M -estimators, since they are derived by mini-

mizing an \empirical" criterion, which is a kernel approximation of the
unknown theoretical criterion to be minimized appearing in (4.3). Un-
der suitable regularity conditions [see Gouri�eroux, Monfort and Tenreiro

(1995)], �̂T (x)� �(x) converges to 0, where �(x) denotes the solution of
min� E0 ( (Ut; �)jXt = x) :

Gouri�eroux, Monfort and Tenreiro (1995) also show how local ver-
sions of such estimators may be used to compute functional residuals in
order to check the hypothesis of a constant function �( � ). In other words,
as is fairly standard in econometrics, error terms (and residual plots) are
introduced to examine whether unobserved heterogeneity is hidden in
seemingly constant parameters �. The GMT contribution is to give a
nonparametric appraisal of these error terms, which justi�es the termi-
nology \ functional residual plots". GMT show how their functional
residual plots are related to some standard testing procedures for the
hypothesis of parameter constancy and how they may be introduced as
important tools in a modeling strategy. A Bayesian alternative is consid-
ered by Jacquier and Jarrow (1995) who suggest to consider draws from
the posterior distribution of parameters of an extended model in order
to deduce some draws of the residual vector and to perform a Bayesian
residual analysis.

4.2 Extended Black-Scholes formulations

The methodology proposed by GMT can be applied to the problem of
option pricing by extending the Black-Scholes formulation. The search
for such a prediction model is made starting from the BS formula, namely
we look for models of the form:

E0(�tjXt) = BS
�
St;K; �; �0(Xt)

�
; (4.5)

where � is the vector of parameters (r; �) which enters the standard
BS formula and Xt is a vector of state variables which is believed to
a�ect the volatility and the interest rate. For instance, we may decide to
include in Xt variables such as St�1;K; : : : : This approach is very much
in line with the idea of computing BS implicit volatilities except that it
involves a statistically more rigorous scheme which also serves as a basis
for building new prediction tools. GMT propose choosing the objective
 function

 (Ut; �) =
�
�t � BS

�
St;K; �; �

��2
;
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with Ut = (St;�t):
20 Such a choice is motivated by observing that if

is model (4.5) is correct, then under suitable assumptions, the solution
�(Xt) of

min
�
E0

�
 (Ut; �)jXt

�

is �0(Xt): Therefore, if the regularity conditions are satis�ed, the con-
vergence result of kernel M -estimators ensures that for T large enough,
�̂T (x) will be close to �0(x): This is a justi�cation to the use of the mod-

i�ed BS formula BS
�
St;K; �; �̂T (Xt)

�
as a predictor of option prices.

One of the conditions to be imposed to obtain the convergence of
�̂T ( � ) is the stationarity of the process (St;�t): Such an assumption is
hardly sustainable in view of the stylized facts concerning the variables
entering this process. To remedy this problem, GMT suggest using the
homogeneity of degree one in (S;K) of the BS function together with
the measurability of St with respect to �(Xt). Indeed, this leads to a
new pricing relationship:

E0

�
�t

St
jXt

�
=

1

St
BS

�
St; �;K; �(Xt)

�
= BS�

�
�; kt; �(Xt)

�
; (4.6)

where kt � K=St is the inverse of the moneyness ratio. In this for-
mulation, all the prices are expressed in terms of the time t underly-
ing asset price. Then a new objective function is now  �(U�

t ; �
�) �h

�t

St
� BS�

�
�; ��

�i2
; where U�

t = �t=St and �
� = (r; �; k) and the kernel

M -estimator, denoted �̂�T (x); is the solution of:

min
��

1

T

TX
t=1

1

hdT
K

�
xt � x

hT

�
 �(U�

t ; �
�):

An issue that arises when implementing the GMT approach is the
choice of the variables to be included in Xt: This problem can be seen
as a problem of model choice which arises very often in econometrics.
Gouri�eroux, Monfort and Tenreiro (1995) propose a modelling approach
based on the use of functional residual plots and con�dence bands for
these residuals. In a �rst step, the parameter � is assumed to be constant
and is estimated by ��0T obtained by minimizing the sample average of
 �(U�

t ; �
�): Then a state variable X1 potentially a�ecting the parame-

ter is introduced. In order to test whether �� should be considered as

20In our case, since we are interested in option pricing or option price prediction,
the  function is related to a pricing error. However if option hedging is the main
goal, the  may be chosen accordingly as a tracking error.
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constant or depending on X1; one computes in a second step functional

residuals. They are de�ned as the di�erence between an approximation
of �̂�T (x1) near the constancy hypothesis and ��0T : Con�dence bands on
these residuals help to determine whether they depend on X1. A plot
of these residuals against X1 is also helpful in choosing a parametric
form for expressing the relationship between �� and X1: In case of a re-
jection of the constancy hypothesis, the parameters of this relationship
are considered as the new functional parameters to be estimated. And
the procedure goes on by repeating the previous steps with new state
variables.

The approach discussed so far can be extended to models other than
the BS. For instance, for American type options one may replace the BS
formula with formula tailored for such options, typically involving nu-
merical approximations. Like the BS formula, they rest on the restrictive
assumptions of constant volatility, interest rates, etc. The M-estimators
approach suggested by GMT readily extends to such and other applica-
tions.
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