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Cet article s'intéresse à l'estimation des modèles semiparamétriques de
séries temporelles définis par leur moyenne et variance conditionnelles. Nous
mettons en exergue l'importance de l'utilisation jointe des restrictions sur la
moyenne et la variance. Ceci amène à tenir compte de la covariance entre la
moyenne et la variance ainsi que de la variance de la variance, autrement dit la
skewness et la kurtosis. Nous établissons les liens directs entre les méthodes
paramétriques usuelles d'estimation, à savoir l'EPMV (Estimateur du Pseudo
Maximum de Vraisemblance), les GMM et les M-estimateurs. L'EPMV usuel est,
dans le cas de la non-normalité, moins efficace que l'estimateur GMM optimal.
Néanmoins, l'EPMV bivarié basé sur le vecteur composé de la variable dépendante
et de son carré est aussi efficace que l'estimateur GMM optimal. Une analyse
Monte Carlo confirme la pertinence de notre approche, en particulier l'importance
de la skewness.

This paper addresses the issue on estimating semiparametric time
series models specified by their conditional mean and conditional variance. We
stress the importance of using joint restrictions on the mean and variance. This
leads to take into account the covariance between the mean and the variance and
the variance of the variance, that is the skewness and kurtosis. We establish the
direct links between the usual parametric estimation methods, namely the QMLE,
the GMM and the M-estimation. The usual univariate QMLE is, under non-
normality, less efficient than the optimal GMM estimator. However, the bivariate
QMLE based on the dependent variable and its square is as efficient as the optimal
GMM one. A Monte Carlo analysis confirms the relevance of our approach, in
particular the importance of skewness.



Mots Clés : M-estimateur, EPMV, GMM, hétéroscédasticité, skewness et
kurtosis conditionnelles

Keywords : M-estimator, QMLE, GMM, heteroskedasticity, conditional
skewness and kurtosis



1 Introduction

Since the introduction of the ARCH (Autoregressive Conditional Het-

eroskedasticity), the GARCH (Generalized ARCH) and EGARCH (Ex-

ponential GARCH) models by Engle (1982), Bollerslev (1986) and Nel-

son (1991) respectively, there has been widespread interest in semipara-

metric dynamic models that jointly parameterize the conditional mean

and conditional variance of �nancial series.1 The trade-o� between pre-

dictable returns (conditional2 mean) and risk (conditional variance) of

asset returns in �nancial time series appears as an essential motivation

for the study of these models. However, in most �nancial series, there are

strong evidence that the conditional probability distribution of returns

has asymmetries and heavy tails compared to the gaussian distribution.

This becomes all the more an issue when one realizes that GARCH

regression models are usually estimated and test statistics computed

based on the Quasi-Maximum Likelihood Estimator (QMLE) under the

nominal assumption of a conditional normal log-likelihood. It is well

known that this QMLE 3 is consistent in the general framework of a

dynamic model under correct speci�cation of both the conditional mean

and the conditional variance.4 Bollerslev andWooldridge (1992) focus on

the QMLE due to its simplicity, but they make the three following points:

�rst, rather than employing QMLE, it is straightforward to construct

GMM estimators; second, the results of Chamberlain (1982), Hansen

(1982), White (1982b) and Cragg (1983) can be extended to produce an

instrumental variables estimator asymptotically more e�cient than the

QMLE under non-normality; third, under enough regularity conditions,

it is almost certainly possible to obtain an estimator with a variance that

achieves the semiparametric lower bound (Chamberlain (1987)).

The main reason why QMLE is credited of simplicity is the regression-

type interpretation of associated inference procedures allowed by the

nominal normality assumption. More precisely, it is usual to interpret

QML estimation and procedures of tests through the estimators and as-

sociated diagnostic tools of two regression equations: one for the condi-

1See Bollerslev-Chou-Kroner (1992) and Bollerslev-Engle-Nelson (1994) for a

review.
2The precise conditioning information is de�ned in the sequel.
3See White (1982-a, 1994), Gouri�eroux-Monfort-Trognon (1984), Gouri�eroux-

Monfort (1993) for the consistency of the QMLE under the nominal assumption of

an exponential distribution and see Broze-Gouri�eroux (1995) and Newey-Steigerwald

(1997) for a general QMLE theory. See also the recent book by Heyde (1997) and

the surveys by Newey-McFadden (1994) and Wooldridge (1994).
4See Weiss (1986) for consistency of the QMLE for ARCH models, Bollerslev-

Wooldridge (1992) for GARCH ones, Lee-Hansen (1994) and Lumsdaine for the

IGARCH of Nelson (1990).
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tional mean and the other one for the conditional variance. We propose

here to systematize this argument and to develop a general inference

theory through these two regression equations that takes into account

skewness (the third moment) and kurtosis (the fourth moment). The

intuition is as follows: on the one hand, since we consider a regression

of the variance, we need, in order to increase the e�ciency, the vari-

ance of the variance, namely the kurtosis; on the other hand, we have to

perform the two regressions jointly. Hence, we need for the e�ciency

reasons to consider the covariance between the two regressions, that is

the covariance between the mean and the variance, namely the skewness.

In this paper, we focus on the e�cient estimation5 in the case of

regression equations de�ned by conditional expectations (for the �rst

and the second moments, at least) without giving up the simplicity of

the QMLE.6 The paper has three main results.

First, we consider a general quadratic class of M-estimators (Huber

(1967)) and characterize the optimal quadratic estimator which involves

the conditional skewness and the conditional kurtosis. We show that the

standard QMLE is asymptotically equivalent to a speci�c quadratic es-

timator which is in general suboptimal. However, the optimal quadratic

estimator can be interpreted as a bivariate QMLE, with respect to the

vector (y; y2) instead of y alone.

Secondly, we state a general equivalence result between (quadratic)

M-estimation and GMM (Hansen (1982)) which holds for any set of

conditional moment restrictions given an information set It�1

E[f(yt; �) j It�1] = 0; � 2 � � IRp

as soon as
@f

@�0
(yt; �) 2 It�1; 8� 2 �;

that is a regression type model.

In the framework of GARCH models, this result implies that the opti-

mal quadratic M-estimator is asymptotically equivalent to the e�cient

GMM (with optimal instruments), even though the class of quadratic

M-estimators is generally strictly included in the GMM class. In other

words, the semiparametric e�ciency bound (see Chamberlain (1987))

5Testing tools are developed in Alami-Meddahi-Renault (1998).
6The previous version of this paper, Meddahi and Renault (1995) stresses that,

even if the regression equations are de�ned by linear projections (in the spirit of Drost

and Nijman (1993) weak GARCH) instead of conditional expectations, regression-

based quadratic M-estimators may also be still consistent. See also Franck and Za-

koian (1997).

2



may be reached by a quadratic estimator which features the same sim-

plicity advantage as the QMLE. As far as inference is concerned in mod-

els de�ned by conditional moment restrictions, one can rely on robust

QMLE inference as developed in Wooldridge (1990, 1991a-b). Of course,

the QMLE paradigm applies in this case in a multivariate version, in-

volving (y; y2) since conditional heteroskedasticity is to be accounted

for.7

The GMM point of view stresses the informational paradox. E�cient

semiparametric estimators generally use, for feasibility, some additional

information which should have been incorporated in the set of conditional

moment restrictions involved in e�cient GMM. This pitfall is not new

(see for instance Bates and White (1990)). However, with respect to the

initial set of moment restrictions, the e�cient semiparametric estima-

tor reaches the semiparametric e�ciency bound (see e.g. Chamberlain

(1987)).

Thirdly, our estimating procedure o�ers the advantage of taking

into account non-gaussian skewness and kurtosis. In general the con-

ditional skewness and the conditional kurtosis are not speci�ed, except

in the so-called semiparametric GARCH models introduced by Engle and

Gonz�alez-Rivera (1991).8 In this framework, the standardized residuals

are i.i.d which implies that the conditional skewness and kurtosis are

constant. Hence, they coincide with the unconditional skewness and

kurtosis, which can be estimated. Thus, our estimation procedure is less

demanding than the nonparametric one of Engle and Gonz�alez-Rivera

(1991). Indeed, this procedure can be applied in a more general set-

ting than the semiparametric one, in particular when we are able to

consider a su�ciently narrow information set It�1 to ensure that con-

ditional skewness and kurtosis are constant. The narrowest information

set that one is allowed to consider is the �-�eld I�t�1 spanned by the

family of measurable functions mt(�) and ht(�), indexed by � 2 � which

represent respectively the conditional mean and the conditional variance

functions of interest. We stress this point not only to show that there

are many cases where we are able to reach the e�ciency bound by using

only parametric techniques but also to notice that nonparametric tools

can often be used as soon as the �-�eld I�t�1 is spanned by a �nite set of

random variables.

The paper is organized as follows. We �rst build our class of quadratic

M-estimators in section 2. In this class, we show that a particular esti-

7For higher moments equations, conditional skewness or conditional kurtosis for

example, QMLE will be de�ned in terms of (y; y2; y3) and (y; y2; y3; y4).
8For the asymptotic properties of the semiparametric GARCH models, see Linton

(1993) and Drost-Klassen (1997).
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mator is asymptotically equivalent to the QMLE. Then, we exhibit an

estimator with minimum asymptotic covariance matrix in this class by

a Gauss-Markov type argument. This optimal instrument takes into ac-

count the conditional skewness and the conditional kurtosis. Section 3

reconsiders the same issue through the GMM approach. The links be-

tween GMM, QMLE and M-estimation are clearly established. Finally,

in section 4 we address several issues related to the feasibility and the

empirical relevance of our general approach. In particular, we consider

in detail the semiparametric GARCH models through a Monte Carlo

study and we describe several circumstances where our methodology re-

mains friendly even though the assumptions of semiparametric GARCH

are dramatically weakened. We conclude in section 5.

2 E�ciency bound for M-estimators

In this section, we �rst introduce the set of dynamic models of inter-

est. Since these models are speci�ed by their conditional mean and their

conditional variance, that is by two regression equations, it is natural to

consider least-squares based estimation procedures. Therefore we intro-

duce a large quadratic class of \generalized" M-estimators. We further

characterize an e�ciency bound for this class of estimators following the

Bates and White (1993) concept of determination of estimators with

minimum asymptotic covariance matrices.

2.1 Notation and setup9

Let (yt; zt); t = 1; 2; ::; T be a sequence of observable random variables

with yt a scalar and zt of dimension K. The variable yt is the en-

dogenous variable of interest which has to be explained in terms of

K explanatory variables zt and past values of yt and zt
10. Thus, let

It�1 = (z0t; yt�1; z
0
t�1; :::; z

0
1; y1)

0 denote the information provided by the

predetermined variables, which will be called the information available

at time (t-1) in the rest of the paper. We consider here the joint infer-

ence about E(yt j It�1) and V ar(yt j It�1). These conditional mean and

variance functions are jointly parameterized by a vector � of size p:

Assumption 1: For some �o 2 � � IRp, E(yt j It�1) = mt(�
0) and

V ar(yt j It�1) = ht(�
0).

9This �rst subsection is to a large extent borrowed from Wooldridge (1991).
10Many concepts and results of the paper could be extended easily to a multivariate

vector yt of endogenous variables. These extensions are omitted here for the sake of

notational simplicity.
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Assumption 1 provides a regression model of order 2 for which usual

identi�ability conditions are assumed.

Assumption 2: For every � 2 �, mt(�) 2 It�1; ht(�) 2 It�1 and

mt(�) = mt(�
0)

ht(�) = ht(�
0)

g ) � = �0

Typically, we have in mind GARCH-regression models where � = (�0; �0)0

and mt(�) depends only on � (mt(�) = mt(�) with a slight change

in notations) and ht(�) depends on � only through past mean values

m� (�); � < t.

In this setting, Assumption 2 is generally replaced by a slightly stronger

one:

Assumption 2'a: � = A�B, �0 = (�0
0

; �0
0

)0.

For every � 2 A, mt(�) = mt(�
0)) � = �0.

For every � 2 B, ht(�
0; �) = ht(�

0; �0)) � = �0.

A local version of Assumption 2'a which is usual for least-squares based

estimators of � and � is:

Assumption 2'b: E
@mt

@�
(�0)

@mt

@�0
(�0) and E

@ht

@�
(�0)

@ht

@�0
(�0) are posi-

tive de�nite.

However, the only maintained assumptions hereafter will be Assumptions

1 and 2 since the additional restrictions which characterize Assumption

2' with respect to Assumption 2 may be binding for at least two rea-

sons. First, they exclude ARCH-M type models (Engle-Lilien-Robins

(1987)), where the whole conditional variance ht(�) should appear in

the conditional mean function mt(�). Second,they exclude some uniden-

ti�able representations of GARCH type models. Let us consider for

instance a GARCH-regression model which, for a given value �0 and

"t = yt �mt(�
0), is characterized by a GARCH(p,q) representation of

"2t :

ht(�
0) = �00 +

qX
i=1

�0i "
2
t�i(�

0) +

pX
j=1

�0q+jht�j(�
0) (2.1)

or equivalently, by the following ARMA (Max(p,q),p) model for "2t :

"2t (�
0)�

qX
i=1

�0i "
2
t�i(�

0)�
pX

j=1

�0q+j"
2
t�j(�

0) = �00+�t�
pX

j=1

�0q+j�t�j (2.2)

where �t = "2t � ht(�). Therefore, the vector of parameters �0 =

(�0i )0�i�p+q is identi�able (in the sense of Assumption 2'a) if and only if

the ARMA representation (2.2) is minimal in the sense that there is no
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common factor involved in both the AR and the MA lag polynomials11.

This excludes for instance the case: �0i = 0 8 i = 1; ::p with nonzero �0q+j
for some j = 1; ::; q. In other words, GARCH(p,0) models, p = 1; 2; :::

are excluded by Assumption 2'.

A benchmark estimator for �0 is the Quasi-Maximum Likelihood Es-

timator (QMLE) under the nominal assumption that yt given It�1 is nor-

mally distributed. For observation t, the quasi-conditional log-likelihood

apart from a constant is:

lt(yt j It�1; �) = �1

2
loght(�)� 1

2ht(�)
(yt �mt(�))

2 (2.3)

The QMLE �̂
Q
T is obtained by maximizing the normal quasi-log-likelihood

function LT (�) =
PT

t=1 lt(�). The consistency and asymptotic probabil-

ity distribution of �̂
Q
T have been extensively studied by Bollerslev and

Wooldridge (1992). In the framework of their assumptions, we know

that the asymptotic covariance matrix of
p
T (�̂

Q
T � �0) is A0�1

B0 A0�1

,

which is consistently estimated by A0�1

T B0
T A0�1

T where:

A0
T = � 1

T

TX
t=1

E[
@st

@�0
(�0)]; B0

T =
1

T

TX
t=1

E[st(�
0)st(�

0)0];

where st(�) =
@lt

@�
(yt j It�1; �):

More precisely, di�erentiation of (2.3) yields the p x 1 score function:

st(�) = � 1

2ht(�)

@ht

@�
(�) +

1

2h2t (�)
(yt �mt(�))

2 @ht

@�
(�)

+ 1
ht(�)

(yt �mt(�))
@mt

@�
(�)

=
1

ht(�)

@mt

@�
(�)"t(�) +

1

2h2t (�)

@ht

@�
(�)�t(�)

(2.4)

where:

"t(�) = yt �mt(�); (2.5.a)

�t(�) = "t(�)
2 � ht(�): (2.5.b)

11Of course, the positivity requirement for the conditional variance ht(�
0) de�ned

by (2.1) implies some inequality restrictions on �0 (see Nelson and Cao (1992)) but

they do not modify the identi�cation issue as presented here.

6



Note that by Assumption 1, "t(�
0) and �t(�

0) are martingale di�erence

sequences with respect to the �ltration It�1. This allows Bollerslev and

Wooldridge (1992) to apply a martingale central limit theorem for the

proof of asymptotic normality of the QMLE.

Since we are concerned by \quadratic statistical inference", the form

of the score function (2.4) in relation with error terms "t(�) and �t(�) of

\regression models" (2.5.a) and (2.5.b) suggests a quadratic interpreta-

tion of the QMLE. More precisely, we consider a modi�ed score function:

~st(�) =
1

ht(�0)

@mt

@�
(�)"t(�) +

1

2h2t (�
0)

@ht

@�
(�)("t(�

0)2 � ht(�)); (2.6)

which is the negative of the gradient vector with respect to � of the

quadratic form:
"2t (�)

2ht(�0)
+

("2t (�
0)� ht(�))

2

4h2t (�
0)

: (2.7)

The idea to base our search for linear procedures of inference on this

quadratic form appears natural since (see Appendix A1):

~st(�
0) = st(�

0) and E[
@~st

@�0
(�0)] = E[

@st

@�0
(�0)] (2.8)

so that the replacement of s by ~s does not modify the matrices AT

and BT that characterize the asymptotic probability distribution of the

\estimator" obtained by solving the �rst-order conditions:
PT

t=1 st(�) =

0: Therefore, we may hope to build, through this modi�ed score function,

a regression-based estimator asymptotically equivalent to the QMLE.We

are going to introduce such an estimator in the following subsection as a

particular element of a large class of quadratic generalized M-estimators.

2.2 A quadratic class of generalized M-estimators

As usual, a regression-based estimation of GARCH-type regression mod-

els raises two main di�culties. First, we have to take into account si-

multaneously the two dynamic regressions:

yt = mt(�) + "t(�); E["t(�
0) j It�1] = 0; (2.9.a)

"2t (�) = ht(�) + �t(�); E[�t(�
0) j It�1] = 0: (2.9.b)

Second, the dependent variable of regression equation (2.9.b) depends

on the unknown parameter � so that we must have at our disposal a

�rst stage consistent estimator ~�T of �0. However, such an estimator is

7



generally easy to obtain. For instance, in the framework of Assumption

2'a, ~�T = (~�0T ;
~�0T )

0 where we can choose in a �rst stage ~�T as a (non

linear) least squares estimator of �0 in the regression equation (2.9.a):

~�T = Arg Min
�

TX
t=1

(yt �mt(�))
2 (2.10.a)

and, in a second stage, ~�T as a (non linear) least squares estimator of

�0 in the regression equation (2.9.b) after replacement of �0 by ~�T :

~�T = Arg Min
�

TX
t=1

("t(~�T )
2 � ht(~�T ; �))

2 (2.10.b)

After obtaining such a preliminary consistent estimation ~�T of �0, it

is then natural to try to improve it by considering more general weight-

ing schemes of the two regression equations, that is to say general M-

estimators of the type:

�̂T (~�T ; 
T ) = Arg Min
�

TX
t=1

qt(�; ~�T ; 
T ) (2.11.a)

where �t;T is a symmetric positive matrix, 
T = (�t;T )T�t�1 and:

qt(�; ~�T ; 
T ) =
1

2
("t(�); "

2
t (
~�T )� ht(�))�t;T ("t(�); "

2
t (
~�T )� ht(�))

0;

(2.11.b)

Indeed, since we have only parametric methodologies in mind12, we shall

always consider weighting matrices �t;T of the following form: �t;T =

�t(!T ), where !t is It-measurable and �t(!) is a symmetric positive

matrix for every ! in a parametric space V � IRn. To derive weak

consistency of the resulting estimator �̂T (~�T ; !T ; 
), 
 = (�t)t�1 (with

a slight change of notation) we shall maintain the following assumption

(see Wooldridge (1994) for notations and terminology):

Assumption 3: Let V � IRn, let �t be a sequence of random matricial

functions de�ned on V . For every ! 2 V , �t(!) is a symmetric 2 x 2

matrix. We assume that:

(A.3.1) � and V are compact.

(A.3.2) ~�T
P�! �0 2 � and !T

P�! !� 2 V .
12However, many results of this paper could be extended to the case of nonpara-

metric consistent estimator �t;T of weighting matrices �t. See Linton (1994) for a

review of this type of approach.
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(A.3.3) mt, ht and �t satisfy the standard measurability and continuity

requirements. In particular mt(�), ht(�) and �t(!) are It�1 measurable

for every (�; !) 2 � x V .
(A.3.4) q



t (�;

~�T ; !) =
1
2
("t(�); "

2
t (
~�T )�ht(�))�t(!)("t(�); "

2
t (
~�T )�ht(�))0

satis�es the Uniform Weak Law of Large Numbers (UWLLN) on � x �

x V .
(A.3.5) �t(!

�) is positive de�nite.

We are then able (see Appendix B) to derive the consistency result

based on the usual analogy principle argument.

Proposition 2.1 Under Assumptions 1, 2, 3, the estimator �̂T (~�T ; !T ; 
)

de�ned by:

�̂T (~�T ; !T ; 
) = Arg Min
�2�

TX
t=1

("t(�); "
2
t (
~�T )� ht(�))

��t(!T )("t(�); "
2
t (
~�T )� ht(�))

0

(2.12)

where 
 = (�t)t�1, is weakly consistent towards �0.

Note that the quadratic M-estimator that we have suggested in the pre-

vious subsection (see the objective function (2.7)) by analogy with the

QMLE belongs to the general class considered here when !� = �0 and

�t(�) =

2
64

1

ht(�)
0

0
1

2h2t (�)

3
75 (2.13)

By extending to a dynamic setting the quadratic principle of estimation

�rst introduced by Crowder (1987) for transversal data, we may be led

to consider more general weighting matrices. Indeed, we may guess

that the weighting matrix (2.13) is optimal in the gaussian case where,

by the well-known kurtosis characterization of the gaussian probability

distribution:

ht(�
0) = V ar["t(�

0) j It�1] =) 2h2t (�
0)

= V ar["2t (�
0) j It�1] = V ar[�t(�

0) j It�1]:
On the other hand, a leptokurtic conditional probability distribution

function (which is a widespread �nding for �nancial time series) may lead

to a di�erent weight of 2h2t (�
0) for �2t (�

0) while skewness may lead to a

non-diagonal weighting matrix �t. Of course, the relevant criterion for

the choice of a sequence 
 = (�t)t�1 of weighting matrices is the asymp-

totic covariance matrix of the corresponding estimator �̂T (~�T ; !T ; 
):

9



As far as the asymptotic probability distribution is concerned, the fol-

lowing assumptions are usual (see for instance Bollerslev and Wooldridge

(1992)).

Assumption 4: In the framework of Assumption 3, we assume that:

(A.4.1.) �0 2 int�, !� 2 intV , interiors of the corresponding parameter
spaces � and

V , and pT (~�T � �0) = Op(1)
p
T (!T � !�) = Op(1).

(A.4.2.) mt(:) and ht(:) are twice continuously di�erentiable on int �

for all It�1:

(A.4.3.) Denote by: s


t (�; �; !) =

@q


t

@�
(�; �; !); which is assumed squared-

integrable, and

[s


t (�; �; !)(s



t (�; �; !))

0

] satis�es the UWLLN on ���� V with:

B0

 = lim

T!1

1

T

TX
t=1

E[s


t (�

0; �0; !�)s


t (�

0; �0; !�)
0

] is positive de�nite;

s


t (�

0; �0; !�) satis�es the central limit theorem:
1p
T

TX
t=1

s


t (�

0; �0; !�)
d!

N [0; B0

 ]:

(A.4.4.)
@s



t

@�
0
(�; �; !) and

@s


t

@�
0
(�; �; !) satisfy the UWLLN on ����V

with

A0

 = limT!1

1

T

TX
t=1

E

�
@s



t

@�
0
(�0; �0; !�)

�
positive de�nite.

Note that:

q


t (�; �; !) =

1

2
["t(�); "

2
t (�) � ht(�)]�t(!)

"
"t(�)

"2t (�)� ht(�)

#
,

s
t (�; �; !) = �
�
@mt

@�
(�);

@ht

@�
(�)

�
�t(!)

"
"t(�)

"2t (�)� ht(�)

#
, and

@s


t

@�0
(�; �; !) =

�
@mt

@�
(�);

@ht

@�
(�)

�
�t(!)

2
64
@mt

@�0
(�)

@ht

@�0
(�)

3
75+ ct(�; �; !);

with E[ct(�
0; �0; !�) j It�1] = 0. Therefore,

E

�
@s



t

@�
0
(�0; �0; !�)

�
= E

2
64
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�t(!)

2
64
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
75
3
75 and

E
h
s


t (�

0; �0; !�)s


t (�

0; �0; !�)
0

i
=

10



E

8><
>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�t(!)�t�t(!)

2
64
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
75
9>=
>; ;

where �t = V ar

""
"t(�

0)

�t(�
0)

#
j It�1

#
:

Therefore, if Assumption 4 is maintained in particular for the canoni-

cal weighting matrix �t = Id2; the positive de�niteness of A0 and B0

corresponds13 to the following assumption:

Assumption 4': (i) �t = V ar

"
"t(�

0)

�t(�
0)

j It�1
#
is positive de�nite.

(ii) E

2
64
�
@mt

@�
(�0);

@ht

@�
(�0)

�264
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
75
3
75 is positive

de�nite.

The �rst item of Assumption 4' is indeed very natural since we are inter-

ested in the asymptotic probability distribution of least squares based

estimators of � from the two dynamic regression equations (2.9.a) and

(2.9.b). If the error terms "t(�
0) and �t(�

0) were conditionally (given

It�1) perfectly correlated, this should introduce a restriction on �, chang-

ing dramatically the estimation issue. The second item is directly re-

lated to the statement of Assumption 2'b in the case of a GARCH-

regression model � = (�
0

; �
0

)
0

conformable to Assumption 2'a. In this

case,
@mt

@�
= 0 so that:

E

8><
>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�264
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
75
9>=
>; =

E

8>><
>>:

2
664
@mt

@�
(�0)

@mt

@�
0
(�0) +

@ht

@�
(�0)

@ht

@�
0
(�0)

@ht

@�
(�0)

@ht

@�
0
(�0)

@ht

@�
(�0)

@ht

@�
0
(�0)

@ht

@�
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>;

is automatically positive de�nite when Assumption 2'b is ful�lled (see

Appendix A2).

It is worth noticing however that the framework of Assumptions 3 and 4

13In general, the non-singularity of an expectation matrix E[x�x
0

] where x is a

p�K random matrix and � is a K�K random symmetric positive matrix depends on

�. But, intuitively, the non singularity of E(xx
0

) is not only necessary (for � = IdK)

but often su�cient.
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is fairly general and does not exclude for instance ARCH-M type mod-

els (where the whole vector � of parameters appears in the conditional

expectation mt(�)) since a �rst step consistent estimator ~�T such asp
T (�̂T � �0) = Op(1) is always available, for instance a QMLE con-

formable to (2.3).

Moreover, Assumptions 3 and 4 are stated in a framework su�-

ciently general to allow for non-stationary score processes, for which

E
h
s


t (�

0; �0; !�)s


t (�

0; �0; !�)
0

i
andE

�
@s



t

@�
0
(�0; �0; !�)

�
could depend on

t. This case is important since it occurs as soon as non-markovian (for

instance MA) components are allowed either in the conditional mean

(ARMA processes) or in the conditional variance (GARCH processes).

In any case, the following result holds:

Proposition 2.2 Under Assumptions 1, 2, 3 and 4, the estimator

�̂T (~�T ; !T ; 
) de�ned by:

�̂T (~�T ; !T ; 
) = Arg Min
�2�

TX
t=1

("t(�); "
2
t (
~�T )�ht(�))�t(!T )("t(�); "

2
t (
~�T )�

ht(�))
0

is asymptotically normal, with asymptotic covariance matrix A0�1


 B0

A

0�1




where:

A0

 = limT!1

1

T

TX
t=1

E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�t(!

�)

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; ;

B0

 = limT!1

1

T

TX
t=1

E

8><
>:
h
@mt

@�
(�0);

@ht

@�
(�0)

i
�t(!

�)�t(�
0)�t(!

�)

2
64

@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
75
9>=
>; ;

�t(�
0) = V ar

" 
"t(�

0)

�t(�
0)

!����� It�1
#
and w� = PlimwT :

We are now able to be more precise about our regression based interpre-

tation of the QMLE:

Proposition 2.3 If Assumptions 1, 2, 3, 4 are ful�lled for


Q = (�
Q
t )t�1; �

Q
t (!

�) =

2
6664

1

ht(�0)
0

0
1

2h2t (�
0)

3
7775

12



then �̂T (~�T ; !T ; 

Q) is asymptotically equivalent to the QMLE �̂QT :

But, as announced in the introduction, Proposition 2.2 suggests the

possibility to build regression based consistent estimators �̂T (~�T ; !T ; 
)

which, for a convenient choice of 
 and !� = Plim !T ; could be (asymp-

totically) strictly more accurate than QMLE. This will be the main pur-

pose of the next subsection 2.3. Let us only notice at this stage that,

according to Proposition 2.2, the asymptotic accuracy of �̂T (~�T ; !T ; 
)

depends on (~�T ; !T ; 
 = (�t)t�1) only through: �t(!
�); t � 1; whatever

the consistent estimators ~�T and !T of �0 and !� may be.

2.3 Determination of estimators with minimum asymp-

totic covariance matrices

Our purpose in this section is to address an e�ciency issue as in Bates

andWhite (1993), that is to �nd an optimal estimator in the class de�ned

by Assumptions 3 and 4. Our main result is then the following:

Theorem 2.1 If the GARCH regression model:(
yt = mt(�) + "t(�); E("t(�

0) j It�1) = 0

"2t (�) = ht(�) + �t(�); E(�t(�
0) j It�1) = 0

ful�lls Assumptions 1 and 2 and: �t(�
0) = V ar

"
"t(�

0)

�t(�
0)

����� It�1
#
is pos-

itive de�nite, a su�cient condition for an estimator of the class de�ned

by Assumptions 3 and 4 being of minimum asymptotic covariance matrix

in that class is that, for all t and all It�1:

�t(!
�) = �t(�

0)�1:

The corresponding asymptotic covariance matrix is (A0)�1 with:

A0 = lim
T!1

1

T

TX
t=1

E

2
664
�
@mt

@�
(�0);

@ht

@�
(�0)

�
��1t (�0)

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
3
775

Of course, this theorem leaves unsolved the general issue of estimating

�t(�
0) to get a feasible estimator in practice.14 This issue will be ad-

dressed in more details in Section 3. At this stage we only stress the

14On the other hand, when a consistent estimator �̂t;T of �t(�
0) is available,

Theorem 2.1 directly provides a consistent estimator of the asymptotic covariance

13



statistical interpretation of the optimal weighting matrix:

�t(!
�) = �t(�

0)�1 =

2
64 ht(�

0) M3t(�
0)ht(�

0)
3

2

M3t(�
0)ht(�

0)
3

2 (3Kt(�
0)� 1)h2t (�

0)

3
75
�1

:

(2.14)

with

M3t(�
0) = E[u3t (�

0) j It�1]; (2.15.a)

Kt(�
0) =

1

3
E[u4t (�

0) j It�1]: (2.15.b)

When one derives the �rst-order conditions associated with this optimal

M-estimator, one obtains equations similar to some previously proposed

in the literature for some particular cases: the i.i.d setting of Crowder

(1987) and the stationary markovian setting of Wefelmeyer (1996). In

other words, Theorem 2.1 suggests to improve the usual QMLE by taking

into account non-gaussian conditional skewness and kurtosis while, by

Proposition 2.3, the QMLE �̂
Q
T should be ine�cient if: M3t(�

0) 6= 0 or

Kt(�
0) 6= 1.

Let us �rst consider the simplest case of symmetric innovations (M3t(�
0) =

0). In this case, the role of Kt(�
0) is to provide the optimal relative

weights for the two regression equations (2.9.a) and (2.9.b). In case of

asymmetry (M3t(�
0) 6= 0), Theorem 2.1 stresses the importance of tak-

ing into account the conditional correlation between these two equations

through a suitably weighted cross-product of the two errors. Indeed,

Meddahi and Renault (1996) documents the role of this correlation as a

form of leverage e�ect, according to Black (1976).

In order to highlight the role of conditional skewness and kurtosis to

build e�cient M-estimators, we shall use the following reparametrization


 = (at; bt; ct)t�1 of the sequence 
 = (�t)t�1 such as

�t = 2

2
664

at

ht(�0)

ct

ht(�0)3=2

ct

ht(�0)3=2
bt

h2t (�
0)

3
775 : (2.16)

matrix of the optimal estimator �̂T by:

1

T

TX
t=1

h
@mt

@�
(�̂T );

@ht

@�
(�̂T )

i
�̂
�1
t;T

2
64

@mt

@�
0
(�̂t;T )

@ht

@�
0
(�̂t;T )

3
75

.

14



In other words, the class of M-estimators de�ned by assumption 3 con-

sists of the following:

Arg Min
�

TX
t=1

at
"t(�)

2

ht(�0)
+bt

("t( ~�T )
2 � ht(�))

2

ht(�0)2
+2ct

"t(�)("t( ~�T )
2 � ht(�))

ht(�0)
3

2

;

(2.17)

for various choices of the weights (at; bt; ct) 2 It�1 ensuring that �t is

positive de�nite (at > 0, bt > 0 and atbt > c2t ). Of course, the M-

estimator (2.17) is unfeasible and its practical implementation should

lead to replace �0 by the consistent preliminary estimator ~�t. But The-

orem 3.1 above implies that the optimal choice of at; bt; ct should be:

a�t = (3Kt(�
0)�1)� b�t ; b

�
t =

1

2

1

3Kt(�0)� 1�M3t(�0)2
; c�t = �M3t � b�t :

(2.18)

For feasibility we need a preliminary estimation of the optimal weights

a�t ; b
�
t ; c

�
t as detailed in section 3 below. Moreover, by Proposition 2.3,

we have a M-estimator asymptotically equivalent to the QMLE �̂
Q
T by

choosing the following constant weights:

(at; bt; ct) = (
1

2
;
1

4
; 0): (2.19)

One of the issues addressed in section 3 below is the estimation of weights

(a�t ; b
�
t ; c

�
t ) which allows one to improve the choice (2.19), that is to obtain

a M-estimator which is more accurate than the QMLE. Indeed, it is

important to keep in mind that the usual QMLE is ine�cient since it

does not fully take into account the information included in the two

regression equations (2.9). On the other hand, if one considers these two

equations as a SUR system:�
yt = mt(�) + "t; E["t j It�1] = 0;

"2t (�
0) = ht(�) + �t; E[�t j It�1] = 0;

(2.20)

it is clear that the QMLE written from the joint probability distribution

of (yt; "
2
t (�

0)) (and not only from yt as the usual QMLE) considered as a

gaussian vector with conditional variance �t(�
0) coincides with the op-

timal M-estimator characterized by Theorem 2.1, when "2t (�
0) has been

replaced by a �rst stage estimator "2t (
~�T ). Another way to interpret such

an estimator is to compute the QMLE with gaussian pseudo-likelihood

from the following SUR system (equivalent to (2.20))�
yt = mt(�) + "t; E["t j It�1] = 0;

y2t = m2
t + ht(�) + �t; E[�t j It�1] = 0:

(2.21)
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Of course, both the QMLE and the optimal M-estimator (as previ-

ously de�ned) are unfeasible. Their practical implementation would need

(see section 3) a �rst stage estimation of the conditional variance ma-

trix �t(�
0). But we stress here that a quasi-generalized PML1 as in

Gourieroux-Monfort-Trognon (1984) is optimal since it takes into ac-

count the informational content of the parametric model for the two

�rst moments (with a parametric speci�cation of the third and fourth

ones) as soon as it is written in a multivariate way about (yt; y
2
t ).

3 Instrumental Variable Interpretations

3.1 An equivalence result

Let us consider the general conditional moment restrictions:

E[f(yt; �) j It�1] = 0; � 2 � � IRp (3.1)

which uniquely de�ne the true unknown value �0 of the vector � of un-

known parameters. For any sequence (�t)t�1 of positive de�nite matrices

of size H (same size that f), one may de�ne a M-estimator �̂T of �0 as:

�̂T = Arg Min
�2�

TX
t=1

f(yt; �)
0�tf(yt; �): (3.2)

Under general regularity conditions, this estimator will be characterized

by the �rst order conditions:

TX
t=1

@f 0

@�
(yt; �̂T )�tf(yt; �̂T ) = 0: (3.3)

By a straightforward generalization of the proof of Proposition 2.1, the

consistency of such an estimator is ensured by the following assumptions:

f(yt; �)� f(yt; �
0) 2 It�1;8� 2 � (3.4.a)

and

�t 2 It�1:
But, in such a case:

@f 0

@�
(yt; �

0) 2 It�1;8� 2 � (3.4.b)
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and the M-estimator �̂T can be reinterpreted as the GMM estimator

associated with the following unconditional moment restrictions (implied

by (3.1)):

E[
@f 0

@�
(yt; �)�tf(yt; �)] = 0: (3.5)

We have proved that any M-estimator of our quadratic class (by extend-

ing the terminology of previous sections) is a GMM estimator based on

(3.1) and corresponding to a particular choice of instruments.15

Conversely, we would like to know if the e�ciency bound of GMM (cor-

responding to optimal instruments) may be reached by M-estimators.

Three types of results are available concerning e�cient GMM based on

conditional moment restrictions (3.1).

i) First, it has been known since Hansen (1982) that the optimal choice

of instruments is given by Dt(�
0)�t(�

0)�1 where:

Dt(�
0) = E[

@f 0

@�
(yt; �

0) j It�1] and �t(�
0) = V ar[f(yt; �

0) j It�1]:

In other words, the GMM e�ciency bound associated with (3.1) is char-

acterized by the just identi�ed unconditional moment restrictions:

E[Dt(�
0)��1t (�0)f(yt; �)] = 0: (3.6)

ii) In practise, we cannot use the moments conditions (3.6) since the pa-

rameter �0 as well as the functionsDt(:) and �t(:) are unknown. �
0 could

be replaced by a �rst stage consistent estimator ~�T without modifying the

asymptotic probability distribution of the resulting GMM estimator (see

e.g. Wooldridge (1994)). In our case, that is a regression type model, the

function Dt(:) is known (assumption (3.4)): Dt(�) =
@f

@�0
(yt; �): Hence,

the main issue is the estimation of the conditional variance �t(�
0). Ei-

ther we have a parametric form of the conditional variance (section 4)

and we can compute the optimal instrument, without however taking

into account the information included in the conditional variance matrix

�t(�
0).16 Or this conditional variance could be nonparametrically esti-

mated at fast enough rates to obtain an asymptotically e�cient GMM

estimator (see e.g. Newey (1990) and Robinson (1991) for the cross-

section case). But in the dynamic case, nonparametric estimation is

di�cult. In particular the fast enough consistency cannot generally be

15Note that this result is di�erent from the well known one where we reinterpret a

score function as a moment condition.
16In other words, our \e�cient" GMM estimation with optimal instruments (with

respect to the initial set of restrictions) is only a second best one.
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obtained in non Markovian settings where the dimension of conditioning

information is growing with the sample size T .17 In this latter case, as

summarized by Wooldridge (1994) \little is known about the e�ciency

bounds for the GMM estimator. Some work is available in the linear

case; see Hansen (1985) and Hansen, Heaton and Ogaki (1988)."18

In what follows we assume that the e�cient GMM estimator �̂T with

optimal instruments is obtained by solving the moment conditions:

1

T

TX
t=1

Dt(~�T )�
�1
t (~�T )f(yt; �̂T ) = 0; (3.7)

where ~�T is a �rst-stage consistent estimator such that
p
T (~�T � �0) =

Op(1). This assumption will be maintained throughout all this section.

iii) In a context of homoskedastic \errors" f(yt; �
0), t = 1; 2; ::T , Rilstone

(1992) noticed that an obvious alternative is the estimator that solves

the moment conditions simultaneously over both the residuals and the

instruments, that is the solution of �:

TX
t=1

Dt(�)f(yt; �) = 0: (3.8)

Rilstone (1992) suggests to refer to �̂T as the \two-step" and �̂�T (solution

of (3.8)) as the \extremum" estimator.

The natural generalization to heteroskedastic errors of the extremum

estimator suggested by Rilstone (1992) is now �̂�T de�ned as solution of

the following system of equations:

1

T

TX
t=1

Dt(�̂
�
T )�

�1
t (~�T )f(yt; �̂

�
T ) = 0: (3.9)

By identi�cation with (3.3), one observes that �̂�T is nothing but that

our e�cient quadratic M-estimator. Thus, by extending the equivalence

argument of Rilstone (1992), one gets an equivalence result between

GMM and M-estimation which was never (to the best of our knowledge)

clearly stated until now:19

Theorem 3.1 If for conditional moment restricitions (3.1) conformable

to (3.4), one considers the e�cient GMM �̂T associated with optimal in-

struments (de�ned by (3.7)) and the e�cient quadratic M-estimator �̂�T
17We recall that an ARCH model can be markovian in the opposite of the GARCH

one.
18See also Kuersteiner (1997) and Guo-Phillips (1997).
19The proof is similar to the proof of Proposition 2.2.
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(de�ned by (3.9)), under standard regularity conditions (Assumptions

1,2,3,4, adapted to the setting of section 3), �̂T and �̂�T are consistent,

asymptotically normal and have the same asymptotic probability distri-

bution.

Note that a key di�erence between our setting and Rilstone's is that we

assume by (3.4) that:
@f 0

@�
(yt; �) 2 It�1 and therefore Dt(�

0) =
@f 0

@�
(yt; �

0): Thus we are able

to interpret Rilstone's suggestion as a quadratic M-estimator. In

other words, we give support, a posteriori, to Rilstone's terminology of

\extremum" estimator to refer to �̂�T .

3.2 Application to ARCH-type processes

The general equivalence result of section 3.1 can be applied to our ARCH-

type setting de�ned by Assumptions 1 to 4 by considering:20

f(yt; �) = [yt �mt(�); (yt �mt(�
0))2 � ht(�)]

0; (3.10)

or, given ~�T as a �rst-stage estimator of �0,

~f(yt; �) = [yt �mt(�); (yt �mt(~�T ))
2 � ht(�)]

0:

With such a convention, the \error term" ~f(yt; �) ful�lls the crucial as-

sumption (3.4) which allows us to apply the equivalence Theorem 3.1.

Since we know from Chamberlain (1987) that the GMM e�ciency bound

is indeed the semiparametric e�ciency bound, we conclude that the e�-

cient way to use the information provided by the parametric speci�cation

mt(:) and ht(:) of conditional mean and variance is the optimal quadratic

M-estimation principle de�ned by Theorem 2.1.

In other words, besides its intuitive appeal, the equivalence result is im-

portant in two respects. The QMLE and its natural improvements in

terms of quadratic M-estimation is considered as a simpler method than

GMM (see Bollerslev and Wooldridge (1992) as mentioned in the intro-

duction above and previous work by Crowder (1987) and Wefelmeyer

(1996)). Also, the GMM theory provides the benchmark for optimal use

of available information in terms of semiparametric e�ciency bounds.

Since GMM with optimal instruments as well as optimal quadratic

M-estimators are generally unfeasible without preliminary adaptive es-

timation of higher order conditional moments, one is often led to use

20Note that we can also consider the instrumental variable estimation based on

E[(yt � mt(�); (yt � mt(�))
2
� ht(�))

0
j It�1] = 0: Given an instrument zt, the

corresponding estimator is consistent and asymptotically equivalent to the estimator

based on E[(yt�mt(�); (yt�mt(�
0))2�ht(�))

0
j It�1] = 0 with the same instrument.
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parametric speci�cations of these moments. Typically, parametric spec-

i�cations of conditional skewness and kurtosis (see section 4) will allow

one to compute both optimal quadratic M-estimator and optimal in-

struments. But, as already explained, such an approach is 
awed by a

logical internal inconsistency since, if one knows the parametric speci�ca-

tionM3t(�) and Kt(�) of conditional skewness and kurtosis, for inference

one should use the set of conditional moments restrictions associated to

the following \augmented" f :

f(yt; �) = [yt �mt(�); (yt �mt(�
0))2 � ht(�); (yt �mt(�

0))3

�M3t(�)h
3=2
t (�); (yt �mt(�

0))4 � 3Kt(�)h
2
t (�)]

0: (3.11)

With respect to (3.11), the optimal GMM associated with (3.10) will

generally be ine�cient. Note that the augmented f , as de�ned by (3.11)

under the assumption (3.4) allows one to apply our equivalence result.

In other words, the new e�ciency bound associated with (3.11) (which is

generally smaller than the one associated to (3.10)) can generate estima-

tion strategies conformable to our section 4 (see below). Furthermore,

the e�ciency bound will be reached by multivariate QMLE which would

consider f(yt; �) as a gaussian vector.

Indeed, the main lesson of the above results is perhaps that, for a

given number of moments involved (order 1,2,3,...), multivariate QMLE

and the associated battery of inference tools (see Gouri�eroux, Monfort

and Trognon (1984), Wooldridge (1990, 1991a, 1991b)) allow one to

reach the semiparametric e�ciency bound. Moreover, the reduction of

information methodology emphasized in section 4 (see below) will often

simplify the feasibility of an \optimal" QMLE by providing a principle

of reduction of the set of admissible strategies. The search for such a

principle is not new in statistics (see unbiasedness, invariance, ... prin-

ciples) and is fruitful if it does not rule out the most natural strategies.

This is clearly the case for interesting examples that we have listed in

section 4.

4 Information adjusted M-estimators and

linear interpretations

4.1 The semiparametric ARCH-type model

To obtain a feasible estimator of which asymptotic variance achieves the

e�ciency bound of Theorem 2.1, we generally require a nonparametric

estimation of dynamic conditional third and fourth moments. These

issues will be discussed in more detail in section 4.2 below.
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Engle and Gonz�alez-Rivera (1991) have introduced the so-called \semi-

parametric ARCH model" to simplify the nonparametric estimation. By

assuming that the standardized errors ut(�
0) = "(�0)=

p
ht(�0) are i.i.d,

they are led to perform a nonparametric probability density estimation in

a static setting which provides a semi-nonparametric inference technique

about �0. Our purpose in this section is to show that this semiparametric

model allows us to compute easily an optimal semiparametric estimator.

Surprisingly, Engle and Gonz�alez-Rivera (1991) stress the role of con-

ditional skewness and kurtosis but their i.i.d assumption imposes some

restrictions on the whole probability distribution of the error process.

Alternatively, we consider in this section an \independence" assumption

which is only de�ned through third and fourth moments:

Assumption 5: The standardized errors ut(�
0) have constant condi-

tional skewness M3t(�
0) and conditional kurtosis Kt(�

0).

In other words, M3t(�
0) and Kt(�

0) are assumed to coincide with un-

conditional skewness and kurtosis coe�cients of the ut process:

M3(�
0) = E(u3t (�

0)) (4.1.a)

K(�0) =
1

3
E(u4t (�

0)) (4.1.b)

An advantage of Assumption 5 (with respect to the more restrictive

Engle and Gonz�alez-Rivera (1991) semiparametric setting) is that it is

fully characterized by a set of conditional moment restrictions:

E(u3t (�
0)�M3(�

0) j It�1) = 0 (4.2.a)

E(u4t (�
0)� 3K(�0) j It�1) = 0 (4.2.b)

which are testable by GMM overidenti�cation tests.

Moreover, let us assume that we have at our disposal a �rst-step consis-

tent estimator ~�T of �0 (it could be the QMLE). Thanks to Assumption

5, we are then able to compute consistent estimators of skewness and

kurtosis coe�cients of ut(�
0):

M̂3;T ( ~�T ) =
1

T

TX
t=1

u3t (
~�T ) (4.3.a)

K̂T ( ~�T ) =
1

3T

TX
t=1

u4t (
~�T ) (4.3.b)
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Note that under Assumption 5, M̂3;T ( ~�T ) (resp K̂T ( ~�T )) is a consis-

tent estimator of both M3t(�
0) and M3(�

0) (resp Kt(�
0) and K(�0)).

Therefore, we obtain a feasible M-estimator of �0 by considering �̂T
�

=

�̂T (~�T ; !̂
�
T ; 
̂

�).

Theorem 4.1 Let us consider the estimator �̂�T de�ned by:

�̂�T = ArgMin
�

TX
t=1

â�T
"t(�)

2

ht(~�T )
+ b̂�T

("t(~�T )
2 � ht(�))

2

ht(~�T )2

+2ĉ�T
"t(�)("t(~�T )

2 � ht(�))

ht(~�T )
3

2

where: â�T = (3K̂T (~�T )�1)�b̂�T ; b̂�T =
1

2

1

3K̂T (~�T )� 1� M̂3;T (~�T )2
; ĉ�T =

�M̂3;T (~�T )� b̂�T ;

and where ~�T is a weakly consistent estimator of �0 such that
p
T (~�T �

�0) = OP (1) (e.g. a consistent asymptotically normal estimator). Then

under Assumptions 1, 2, 3, 4 and 5, �̂�T is a weakly consistent estima-

tor of �0, asymptotically normal, of which asymptotic covariance matrix

coincides with the e�ciency bound �0 de�ned by Theorem 2.1.

We then have in a sense constructed an optimal M-estimator of �0. Of

course, this optimality is de�ned relatively to a given set of estimat-

ing restrictions, namely Assumption 1. In particular, the informational

content of Assumption 5 is not take into account (see section 3). How-

ever, for normal errors ut, our estimator is asymptotically equivalent

to �̂
Q
T , which in this case is the Maximum Likelihood Estimator

(MLE). This is a direct consequence of Proposition 2.3, Theorems 2.1

and 4.1.21 On the other hand, in the semiparametric setting proposed

by Engle and Gonz�alez-Rivera (1991) (and more generally in our frame-

work de�ned by Assumptions 1 to 5), Theorem 2.1 provides the best

choice of weights �t to take into account non-normal skewness and kur-

tosis coe�cients. In particular, in this latter case, our estimator strictly

dominates (without a genuine additional computational di�culty) the

usual QMLE based on nominal normality. The QMLE appears to be a

judicious way to estimate only if we are sure that conditional skewness

and kurtosis are respectively equal to 0 and 1.

21Proposition 2.3, Theorems 2.1 and 4.1 prove respectively that: �rst, �̂
Q
T
is asymp-

totically equivalent to the estimator �̂T (~�T ; !
�; 
Q) of our class; second, 
Q is an

optimal choice of 
 in the normal case; third, �̂T (~�T ; !
�; 
Q) may be replaced by a

feasible estimator without loss of e�ciency.
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4.2 Relaxing the assumption of semiparametric ARCH

Our semiparametric ARCH type setting has allowed us to consistently

estimate (conditional) skewness and kurtosis by their empirical counter-

parts. If we are not ready to maintain Assumption 5, we know that the

empirical skewness and kurtosis coe�cients (4.3) are only consistent es-

timates of marginal skewness and kurtosis. Therefore, Theorem 4.1 does

not provide in general an e�cient estimator as characterized by Theo-

rem 2.1. We propose in this section a general methodology to construct

\e�cient" estimators, where the e�ciency concept is possibly weakened

by restricting ourselves to more speci�c models and estimators. The ba-

sic tool for doing this is the following remark which is a straightforward

corollary of Proposition 2.2:

Let us consider a sequence of �-�elds Jt, t = 0; 1; 2; ::, such that, for any

� 2 �:

mt(�); ht(�) 2 Jt�1 � It�1: (4.4)

Under assumptions 1, 2, 3, 4 and the notations of proposition 2.2, we

consider the class CJ of M-estimators �̂(~�T ; !T ; 
) such that:

�t(!) 2 Jt�1 (4.5)

for any ! 2 V and t = 1; 2; ::T:

Since mt(�) and ht(�) are assumed to be Jt�1 measurable for any �,

the class CJ is large and contains in particular every M-estimator (2.17)

associated to constant weights at; bt; ct. Therefore, by looking for a M-

estimator optimal in the class CJ , we are in particular improving the

QMLE which corresponds (in terms of asymptotic equivalence) to the

constant weights (
1

2
;
1

4
; 0).

For such an estimator, the asymptotic covariance matrix A0�1


 B0

A

0�1




admits a slightly modi�ed expression deduced from Proposition 2.2 by

replacing �t(�
0) by:

�J
t (�

0) = V ar[(
"t(�

0)

�t(�
0)

) j Jt�1] = E[�t(�
0) j Jt�1]:

This suggests the following generalization of Theorem 2.1:

Theorem 4.2 Under the assumptions of Theorem 2.1, a su�cient con-

dition for an estimator of the class CJ (according to (4.4)/(4.5)) to have

the minimum asymptotic covariance matrix in this class is that, for all

t:

�t(!
�) = (�J

t (�
0))�1:
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Notice that Theorem 4.2 is not identical to Theorem 2.1 since it can be

applied to sub-� �elds Jt�1 � It�1 = �(zt; y� ; z� ; � < t) without even

assuming that (Jt); t = 0; 1; 2:: is an increasing �ltration. If for instance

we consider a linear regression model with ARCH disturbances:

mt(�) = a+ x0tb; ht(�) = ! +

qX
i=1

�i(yt�i �mt�i(�))
2; (4.6)

where xt = (x1t ; x
2
t ; ::x

H
t )
0 and xht , h = 1; ::H; is a given variable in It�1,

we can consider:

Jt�1 = �(xt; yt�i; xt�i; i = 1; 2::; q):

Thus, Theorem 4.2 suggests a large set of applications which were not

previously considered in the literature. The basic idea of these applica-

tions is that one could try to �nd a reduction Jt�1 of the information set

such that conditional skewness and kurtosis with respect to this new in-

formation set admit simpler forms which can be consistently estimated.

Below, we consider three types of \simpli�ed" conditional skewness and

kurtosis.

Application 1: Constant conditional skewness and kurtosis.

Let us �rst imagine that a reduction Jt�1 of the information set It�1
(conformable to (4.4)) allows one to obtain constant conditional skewness

and kurtosis:

M3(�
0) = E[ut(�

0)3 j Jt�1] = E[M3t(�
0) j Jt�1]; (4.7.a)

K(�0) =
1

3
E[ut(�

0)4 j Jt�1] = E[Kt(�
0) j Jt�1]: (4.7.b)

If this is the case, it is true in particular for the minimal information

set:

Jt�1 = I�t�1 = �(mt(�); ht(�); � 2 �):

For notational simplicity, we will focus on this case. Therefore, the

hypothesis (4.7) may be tested by considering the moment conditions:

E[ut(�
0)3 �M3 j I�t�1] = 0 and E[ut(�

0)4 � 3K j I�t�1] = 0:

More precisely, one can perform an overidenti�cation Hansen's test on

the following set of conditional moment restrictions associated with the

vector (�0;M3;K)0 of unknown parameters:(
E[yt �mt(�) j I�t�1] = 0; E[(yt �mt(�))

2 � ht(�) j I�t�1] = 0;

E[ut(�
0)3 �M3 j I�t�1] = 0; E[ut(�

0)4 � 3K j I�t�1] = 0:
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Let us notice that if we consider example (4.6), we are led to test or-

thogonality conditions like:

Cov[u3t (�
0); f(xt; x� ; y� ; � < t)] = 0 and

Cov[u4t (�
0); f(xt; x� ; y� ; � < t)] = 0 (4.8)

for any real valued function f. Taking into account the parametric speci�-

cation (4.6), it is quite natural to consider, as particular testing functions

f, the polynomials of degree 1 and 2 with respect to the variables compo-

nents of (xt; xt�i; yt�i; i = 1; 2; ::q). In any case, if one trusts assumption

(4.7), one can use the following result:

Theorem 4.3 Under assumptions (4.7) with the assumptions of Theo-

rem 2.1, the estimators �̂�T de�ned by Theorem 4.1 is of minimum asymp-

totic covariance matrix in the minimal class CI�.
In other words, thanks to a reduction CI� of the class of M-estimators

we consider, assumption (4.7) is a su�cient condition (much more gen-

eral than the semiparametric ARCH setting) to ensure that the M-

estimator �̂�T computed from empirical skewness and kurtosis is optimal

in a second-best sense and particularly, more accurate than the QMLE.

Indeed, to ensure that �̂�T is better than the usual QMLE, it is su�-

cient to know that �̂�T is optimal in the subclass C0 of CI� of M-estimators

associated to constant weights: (at; bt; ct) = (a; b; c). This optimality is

ensured by a weaker assumption than (4.7) as shown by the following:

Proposition 4.1 If the following orthogonality conditions are ful�lled:

Cov[(
M3t(�

0)

Kt(�
0)

);
1

ht(�0)

@mt

@�
(�0)

@mt

@�0
(�0)] = 0;

Cov[(
M3t(�

0)

Kt(�
0)

);
1

ht(�0)2
@ht

@�
(�0)

@ht

@�0
(�0)] = 0;

Cov[(
M3t(�

0)

Kt(�
0)

);
1

ht(�0)3=2
@mt

@�
(�0)

@ht

@�0
(�0)] = 0;

then the estimator �̂�T de�ned in Theorem 4.1 is of minimum asymptotic

covariance matrix in the class C0 of M-estimators de�ned by constant

weights (a; b; c).

The orthogonality assumptions of proposition 4.1 are minimal in the

sense that they are a weakening of (4.7) which involves only the functions

of Jt�1 = I�t�1 which do appear in the variance calculations.

Application 2: \Linear models" of the conditional skewness

and kurtosis.
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It turns out that there are situations where, while the assumption

(4.7) of constant conditional skewness and kurtosis could not be main-

tained, one may trust a more general parametric model (associated with

a reduction Jt�1 of the information set):�
MJ

3t(�
0) = E[M3t(�

0) j Jt�1] =MC
3 (mt(�

0); ht(�
0); �)

KJ
t (�

0) = E[K3(�
0) j Jt�1] = KC(mt(�

0); ht(�
0); �)

(4.9)

where � is a vector of nuisance parameters and MC
3 (:) and KC(:) are

known functions.

An example of such a situation is provided by Drost and Nijman

(1993) in the context of temporal aggregation of a symmetric semipara-

metric ARCH(1) process. Indeed, one of the weaknesses of the semi-

parametric GARCH framework considered in subsection 4.1 is its lack

of robustness with respect to temporal aggregation (see Drost and Ni-

jman (1993) and Meddahi and Renault (1996)). Thus it is important

to be able to relax the assumption of semiparametric GARCH if we are

not sure of the relevant frequency of sampling (which should allow us to

maintain the semiparametric assumption). Following Drost and Nijman

(1993), Example 3 page 918, let us consider the following semiparametric

symmetric ARCH(1) process:�
yt =

p
ht(�0)ut; ht(�

0) =  0 + �0y2t�1;

ut i:i:d; E[ut] = 0; V ar(ut) = 1; E[u3t ] = 0:
(4.10)

If one now imagines that the sampling frequency is divided by 2, one

observes y2t; t 2 Z, which de�nes a reduced information �ltration:

I
(2)
2t = �(y2� ; � � t):

Due to this reduction of past information, we now have to rede�ne the

conditional variance process:

h
(2)
2t (�

0) = V ar[y2t j I(2)2t�2]:

The parametric form of h
(2)
2t (�

0) can be deduced from (4.10) by elemen-

tary algebra: h
(2)
2t = E[h2t j I(2)2t�2]

with: h2t =  +�y22t�1 =  +�u22t�1( +�y
2
2t�2) =  +�( +�y22t�2)+

�( + �y22t�2)(u
2
2t�1 � 1):

Therefore:

h
(2)
2t =  (1 + �) + �2y22t�2 (4.11)

and

u
(2)
2t =

y2tq
h
(2)
2t

= u2t

s
h2t

h
(2)
2t

= u2t

q
�2t + u22t�1(1� �2t) (4.12)
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with

�2t =
 

h
(2)
2t

: (4.13)

By a simple development of E[(u
(2)
2t )

4 j I(2)2t�2] from (4.11), one gets:

E[(u
(2)
2t )

4 j I(2)2t�2] = 3K[�22t(3K � 1)� 2�2t(3K � 1) + 3K] (4.14)

where

K =
1

3
E[u4t j It�1] =

1

3
E[u4t ]:

In other words, while conditional kurtosis was constant with a given

frequency, it is now time-varying and stochastic (through the process

�2t) when the sampling frequency is divided by 2. On the other hand,

the symmetry assumption is maintained:

E[(u
(2)
2t )

3 j I(2)2t�2] = 0:

This example suggests a class of models where, for a reduced information

Jt, one has the following relaxation of (4.7):

KJ
t (�

0) =
1

3
E[ut(�

0)4 j Jt�1] = �0 +
�1

ht(�0)
+

�2

(ht(�0))2
(4.15)

and, in this case MJ
3t(�

0) = 0.

Such a parametric form of conditional kurtosis has been suggested by

temporal aggregation arguments.22 Moreover, it corresponds to some

empirical evidence already documented for instance by Bossaerts, Hafner

and Hardle (1995) who notice that while higher conditional volatility

is associated with large changes in exchange rate quotes, conditional

kurtosis is higher for small quote changes.

In any case, whatever the parametric model (4.9) we have in mind, it

can be used to compute an estimator asymptotically equivalent to the

e�cient one in the class CJ (de�ned by Theorem 4.2). The procedure

may be the following. First, compute standardized residuals ~ut(~�T ) as-

sociated with a �rst-stage consistent estimator ~�T . Then, compute a

consistent estimator ~�T of � from (4.9), for instance by minimizing the

sum of squared deviations:

TX
t=1

[~u3t (
~�T )�Mc

3(mt(~�T ); ht(~�T ); �)]
2+[

1

3
~u4t (

~�T )�Kc(mt(~�T ); ht(~�T ); �)]
2:

22See also Hansen (1994), DeJong, Drost and Werker (1996), El-Babsiri and Za-

koian (1997), for examples of heteroskewness and heterokurtosis models.
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For the example (4.15) we only have to perform linear OLS of 1
3
~u4t (

~�T )

with respect to 1;
1

ht(~�T )
and

1

(ht(~�T ))2
. Finally, use the adjusted condi-

tional skewnessMc
3 (mt(~�T ); ht(~�T ); ~�) and kurtosisK

c(mt(~�T ); ht(~�T ); ~�)

to compute a weighting matrix ~�t;T = [~�J
t;T (

~�T )]
�1. By Proposition

2.2, the estimator �̂T deduced from ~�T and the weighting matrices ~�t;T ,

t = 1; 2::; T , will be of minimal asymptotic covariance matrix in the class

CJ .
Application 3: Nonparametric regression models of the condi-

tional skewness and kurtosis.

The two applications above always assume a fully speci�ed para-

metric model for conditional skewness and kurtosis (with respect to a

reduced �ltration J). In this respect, they su�er from the usual draw-

back: In order to compute an \e�cient" M-estimator, we need additional

information which could theoretically be used for de�ning a better esti-

mator (see section 3 for some insights on this paradox). A way to avoid

this problem is to look for weighting matrices �t, t = 1; 2::; T , which are

deduced from a nonparametric estimation of the conditional variance

�t(�
0). But for such a semiparametric strategy, the usual disclaimer ap-

plies: if the process is not markovian in such a way that �t(�
0) depends

on It�1 through an in�nite number of lagged values y� ; � < t, the non-

parametric estimation cannot be performed in general. Moreover, non

Markovian dynamics of conditional higher order moments is a common

situation since, for instance in a GARCH framework, dynamics (4.15)

of conditional kurtosis are not markovian. Of course, one may always

imagine limiting a priori the number of lags taken into account in the

nonparametric estimation (see e.g. Masry and Tjostheim (1995)), but

there is then a trade o� between the misspeci�cation bias and the curse

of dimensionality problem.

Thus a reduction of the information set may be very useful. Indeed,

when �t(�
0) cannot be consistently estimated, it may be the case that

a reduction J of the information �ltration provides a new covariance

matrix �J
t (�

0) which depends only on a �nite number of given functions.

For instance with the minimal information set:

Jt�1 = I�t�1 = �(mt(�); ht(�); � 2 �)

we may hope that MJ
3t(�

0) and KJ
t (�

0) depend only on a �nite number

of functions of lagged values of (mt(�
0); ht(�

0)). By extending the main

idea of Application 2, one may imagine for instance that KJ
t (�

0) is an

unknown function of the q variables ht�ij (�
0), ij 2 N�, j = 1; 2::; q.

In such a case, the estimation procedure described in Application 2 can
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be generalized by replacing the second stage nonlinear regression by a

nonparametric kernel estimation of the regression function of ~u3t (
~�T ) and

~u4t (
~�T ) on relevant variables.

4.3 Multistage linear least squares procedures

In this section we show that all the estimators considered above (except

the ones which involve nonparametric kernel estimation) admit asymp-

totically equivalent versions which can be computed by using only linear

regression packages.

We have already stressed (see (2.10)) that in standard settings, a �rst-

stage consistent estimator ~�T can be obtained with nonlinear regression

packages. Of course, with Newton regression (see e.g. Davidson and

MacKinnon (1993)) these nonlinear regressions can be replaced with

linear ones. It remains to be explained how we are able to compute an

e�cient M-estimator (that is an estimator asymptotically equivalent to

the e�cient one de�ned by Theorem 4.1, Theorem 4.2 or Application

2) by using only linear tools. Indeed, this is a general property of our

quadratic M-estimators as it is stated in the following theorem:

Theorem 4.4 Consider, in the context of Assumptions 1, 2, 3, 4, a

M-estimator �̂1T de�ned by:

�̂1T = ArgMin
�

TX
t=1

�0t(�;
~�T )�t;T (~�T )�t(�; ~�T )

where, for t = 1; 2:::; �t is a known function of class C2 on (int�)2

such that E[�t(�
0; �0) j It�1] = 0. Then �̂1T is asymptotically equivalent

to �̂2T de�ned by

�̂2T = ArgMin
�

TX
t=1

[�t(~�T ; ~�T ) +
@�t

@�0
(~�T ; ~�T )(� � ~�T )]

0

��t;T (~�T )[�t(~�T ; ~�T ) +
@�t

@�0
(~�T ; ~�T )(� � ~�T )]

where
@�t

@�0
denotes the jacobian matrix of �t with respect to its �rst oc-

curence.

This theorem implicitly assumes that �t veri�es the standard measurabil-

ity, continuity and di�erentiability conditions which ensure consistency
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and asymptotic normality of the associated estimators. This is typically

the case under Assumptions 1, 2, 3, 4, if:

�t(�; �) = ("t(�); "
2
t (�)� ht(�)):

The basic idea of Theorem 4.4, namely a Newton-based modi�cation of

the initial objective function to produce a two-step estimation method

without loss of e�ciency is not new in econometrics. From the sem-

inal paper by Hartley (1961) and its application to dynamic models

by Hatanaka (1974), Trognon and Gouri�eroux (1990) have developed a

general theory (see also Pagan (1986)). Indeed, the proof of Theorem

4.4 shows that we are confronted with a case where there is no e�-

ciency loss produced by a direct two-stage procedure and thus, we do

not need to build an \approximate objective function" as in Trognon

and Gouri�eroux (1990). By application of the same methodology, all the

procedures described above can be performed by linear regressions, in-

cluding the preliminary estimation of conditional skewness and kurtosis

functions.

4.4 Monte Carlo evidence

Until now we have only presented theoretical asymptotic properties of

our various estimators. In the following, we present a Monte Carlo study

which compare the asymptotic variances is several cases. Thus we con-

sider a large sample size (1000). We want to give a 
avor of the im-

portance of taking into account conditional skewness and kurtosis. A

complete discussion of the small-sample is done in Alami, Meddahi and

Renault (1998) (AMR hereafter). We consider the following DGP:

yt = c+ �yt�1 + "t (4.16.a)

ht = ! + �"2t�1 (4.16.b)

� = (c; �; !; �)0 with �0 = (1; 0:7; 0:5; 0:5)0, with three possible probabil-

ity distributions for the i.i.d standardized residuals ut =
"tp
ht
: standard

Normal, standardized Student T(5) and standardized Gamma �(1).

For each experiment, we have performed 400 replications. The main goal

of these experiments is to compare, for the three probability distributions

above, three natural estimators:23

23A large variety of estimators should be considered. For example, OLS could

be iterated to perform QGLS. In any case, we know that the asymptotic accuracy

of QGLS is worse than QMLE in case 1 (for the estimation of c and �, see Engle

(1982)). Thus QGLS is not studied here, to focus on our main issue of improving

QMLE.
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1) Two-stage OLS, that is OLS on (4.16.a) to compute residuals "̂t and

OLS on the approximated regression equation associated with (4.16.b):

"̂2t ' ! + �"̂2t�1 + �t:

2) QMLE.

3) Our e�cient M-estimator from Theorem 4.1.

Since our e�cient M-estimator is a two-stage one (based on a �rst

stage consistent estimator ~�T ), the �nite sample properties might depend

heavily on the choice of ~�T . Therefore, we consider below four versions

of our e�cient M-estimator:

� Version C1: ~�T = OLS,

� Version C2: ~�T = QMLE,

� Version C3: \Iterated OLS",

� Version C4: \Iterated QMLE",

where \Iterated OLS" (resp QMLE) means that ~�
(5)
T is de�ned from the

following algorithm: ~�
(1)
T is the \version C1" (resp C2) e�cient estimator,

and for p = 2; 3; 4; 5; ~�
(p)
T is the e�cient estimator computed with ~�

(p�1)
T

as a �rst-stage estimator ~�T . For these small-scale experiments, we have

simpli�ed this theoretical procedure by using, at each stage, only one

step of the numerical routine of optimization.24

The results of our Monte Carlo experiments are presented in tables

1, 2, 3 which correspond respectively to cases 1, 2 and 3. We provide the

mean over our 400 replications, and between brackets, the Monte Carlo

standard error.25

The Monte Carlo results lead to four preliminary conclusions:

i) The ARCH parameters (! and �) are very badly estimated

by OLS. This ine�ciency is more and more striking when one goes

from Table 1 to Table 3. While the heteroskedasticity parameter is

underestimated by OLS by almost 20 percent in the gaussian case, it is

underestimated by almost 50 percent in the gamma case, that is when

both leptokurtosis and skewness are present.

ii) Despite the ine�ciency of OLS, it can be used as a �rst-

stage estimator for e�cient estimation without a dramatic loss

of e�ciency with respect to the use of QMLE as a �rst-stage

estimator. In other words, C1 (resp C3) is not very di�erent from C2

(resp C4). In particular, the di�erence is negligible in the iterated case:

C3 and C4 provide almost identical results (large sample size). However,

24We provide in AMR (1998) additional experiments to show that such a simpli�-

cation has almost no impact on the value of ~�
(5)

T
.

25Mean and Monte carlo standard errors are obtained without any procedure of

variance reduction. See AMR (1998) for a comparison with theoretical standard

errors.
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we will now focus on C2 and C4 (e�cient estimator with initial estimator

QML) that we want to compare to b, that is QMLE.

iii) As far as one is concerned by the estimation of the �rst-

order dynamics (c end �), the use of an e�cient procedure (C2

and C4) provides important e�ciency gains for non-gaussian

distributions, particularly when skewness is present. The most

striking result is that the e�cient estimator of � is almost twice more

accurate than QML in the case of gamma errors. On the other hand,

iteration does not appear very fruitful (C4 almost identical to C2) due

to the large sample size.

iv) The e�cient estimator of the heteroskedasticity parameters

� is more accurate than QMLE. The e�ciency gain reached almost

50 percent in case of gamma errors. However, one has to be cautious

when interpreting this conclusion for two reasons. First, it is important

to use the iterated version of the e�cient estimator, since, otherwise, �

could be severely underestimated. Second, the e�ciency gain in the case

of a symmetric distribution (Student case) is only due (see the expression

of the score) to the �nite sample gain in estimation of c and �.

In any case, we conclude that, for accurate estimation of both �rst-order

and second-order dynamics (� and �), the e�cient estimation method

provides a genuine e�ciency gain in the case of skewed innovations. As

already noticed by Engle and Gonz�alez-Rivera (1991), fat tails without

skewness matter less. On the other hand, there is no loss implied by e�-

cient estimation with respect to QML, at least for sample sizes 1000 with

an iterated version of the estimator. Moreover, since one can use OLS

as a �rst-stage estimator, e�cient estimation does not imply dramatic

numerical complexity with respect to QML. In other words, we conclude

that for estimation, QML is strictly dominated by e�cient procedures

in all respects.

5 Conclusion

In this paper, we consider the estimation of time series models de�ned

by their conditional mean and variance. We introduce a large class of

quadratic M-estimators and characterize the optimal estimator which

involves conditional skewness and kurtosis. We show that this optimal

estimator is more e�cient than the QMLE under non-normality. Fur-

thermore, it is as e�cient as the optimal GMM as well as the bivariate

QMLE based on the dependent variable and its square. We also extend

this study to higher order moments.

We apply our methodology to the so-called semiparametric GARCH
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models of Engle and Gonz�alez-Rivera (1991). A monte Carlo analy-

sis con�rms the relevance of our approach, in particular the importance

of skewness. The recent work by Guo and Phillips (1997) also stress the

skewness e�ect. We also present several cases where we can apply our

methodology while the semiparametric setting (standardized residuals

are i.i.d) is violated. A Monte Carlo analysis in such cases is considered

in AMR (1998). Moreover, such cases, typically heteroskewness and het-

erokurtosis, introduce speci�c problems in testing for heteroskedasticity

as detailed in AMR (1998).
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Appendix A1

We have ~st(�
0) =

1

ht(�0)

@mt

@�
(�0)"t(�

0) +
1

2h2t (�
0)

@ht

@�
(�0)�t(�

0)

which is, by (2.4), equal to st(�
0). We have

@st

@�0
(�) = � 1

h2t (�)

@mt

@�
(�)

@ht

@�0
(�)"t(�) +

1

ht(�)

@2mt

@�@�0
(�)"t(�)

� 1

ht(�)

@mt

@�
(�)

@mt

@�0
(�)� 1

h3t (�)

@ht

@�
(�)

@ht

@�0
(�)�t(�)

+
1

2h2t (�)

@2ht

@�@�0
(�)�t(�) � 1

2h2t (�)

@ht

@�
(�)

@ht

@�0
(�), and

@~st

@�0
(�) =

1

ht(�0)

@2mt

@�@�0
(�)"t(�)� 1

ht(�0)

@mt

@�
(�)

@mt

@�0
(�)

+
1

2h2t (�
0)

@2ht

@�@�0
(�)("2t (�

0)� ht(�)) � 1

2h2t (�
0)

@ht

@�
(�)

@ht

@�0
(�):

Due to Assumptions 1 and 2, we have

E[
@st

@�0
(�0)] = �E[ 1

ht(�0)

@mt

@�
(�)

@mt

@�0
(�)]�E[ 1

2h2t (�
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@ht

@�
(�)

@ht

@�0
(�)]; and

E[
@~st

@�0
(�0)] = �E[ 1

ht(�0)

@mt

@�
(�)

@mt

@�0
(�)]�E[ 1

2h2t (�
0)

@ht

@�
(�)

@ht

@�0
(�)]; that is

E[
@st

@�0
(�0)] = E[

@~st

@�0
(�0)]:

Appendix A2
To prove the assertion, we must show that the matrix is invertible (since
it is positive). We have

E

8>><
>>:
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Let us consider a vector Z = (Z 01; Z
0
2)
0 such that

E
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Z = 0: The two terms

are nonnegatives. Hence,

Z 01E
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�
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(�0)

@ht

@�
0
(�0)

�
Z = 0: By the �rst

part of Assumption 2'b, we conclude that Z1 = 0. Then, by the second
part of this assumption, we conclude that Z2 = 0.2

Appendix B
Proof of Proposition 2.1: By the usual Jennrich (1969) argument,
it is su�cient to check that, when T goes to in�nity, (2.12) de�nes an
asymptotic minimization program of which only solution is �0. The
objective limit function is 2 E[q



t (�; �

0; !�)]. We have:

E[q


t (�; �

0; !�)] = E[("t(�); "
2
t (�

0)� ht(�))�t(!
�)("t(�); "

2
t (�

0)� ht(�))
0]

Let us de�ne Xt(�) = ("t(�); "
2
t (�

0) � ht(�))
0. Straightforward calculus

show that:
E[q



t (�; �

0; !�)]�E[q
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We have Xt(�)�Xt(�
0) = (mt(�

0)�mt(�); ht(�
0)� ht(�))

0

which is, by Assumption 2, It�1-adapted. This is also the case for �t(!
�)

(by A.3.3). We have also, by Assumption 1, E[Xt(�
0) j It�1] = 0: Hence:

E[(Xt(�)�Xt(�
0))0�t(!

�)Xt(�
0)] = 0; and then

E[q


t (�; �

0; !�)]�E[q
t (�0; �0; !�)] = E[(Xt(�)�Xt(�
0))0�t(!

�)(Xt(�)�
Xt(�

0))] � 0:
In other words, �0 is an argminimum of the function E[q
t (�; �

0; !�)]. To
complete the proof, we need to prove that �0 is the unique minimum.
Let us consider another minimum ��. We have:
E[q



t (�

�; �0; !�)]�E[q


t (�

0; �0; !�)] = 0 =
E[(Xt(�

�)�Xt(�
0))0�t(!

�)(Xt(�
�)�Xt(�

0))]:
Hence (Xt(�

�)�Xt(�
0))0�t(!

�)(Xt(�
�)�Xt(�

0)) = 0:
By A.3.5, �t(!

�) is de�nite positive; Hence Xt(�
�) = Xt(�

0) and by
Assumption 2, �� = �0.2

Proof of Proposition 2.2: The estimator �̂T (~�T ; !T ; 
) (�̂T hereafter)

is de�ned by (see Assumption 4):

TX
t=1

s


t (�̂T ;

~�T ; !T ) = 0: By a Taylor
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expansion around (�0; �0; !�), we get:
TX
t=1

s


t (�

0; �0; !�) +

TX
t=1

@s


t

@�0
(�0; �0; !�)(�̂T � �0)

+

TX
t=1

@s


t

@�0
(�0; �0; !�)(~�T � �0) +

TX
t=1

@s


t

@!0
(�0; �0; !�)(!T � !�) = oP (1)

We have s


t (�; �; !) = �

�
@mt

@�
(�);

@ht

@�
(�)

�
�t(!)

"
"t(�)

"2t (�)� ht(�)

#
:

Hence
@s



t

@�0
(�; �; !) = �

�
@mt

@�
(�);

@ht

@�
(�)

�
�t(!)

2
4 0

�2@mt

@�0
(�)"t(�)

3
5 ;

then E[
@s



t

@�0
(�0; �0; !�)]

= E

2
4� �@mt

@�
(�0);

@ht

@�
(�0)

�
�t(!

�)

2
4 0

�2@mt

@�0
(�0)"t(�

0)

3
5
3
5 = 0:

Let !i a component of !. We have

@s


t

@!i
(�; �; !) = �

�
@mt

@�
(�);

@ht

@�
(�)

�
@�t

@wi
(!)

"
"t(�)

"2t (�) � ht(�)

#
:

Then E[
@s



t

@!0
(�0; �0; !�)]

= E

"
�
�
@mt

@�
(�0);

@ht

@�
(�0)

�
@�t

@wi
(!�)

"
"t(�

0)

"2t (�
0)� ht(�

0)

##
= 0:

Hence:

1p
T

TX
t=1

s


t (�

0; �0; !�) + [
1

T

TX
t=1

@s


t

@�0
(�0; �0; !�)]

p
T (�̂T � �0) = oP (1)

and
p
T (�̂T � �0) = �A0�1




1p
T

TX
t=1

s


t (�

0; �0; !�)+ oP (1): By Assump-

tion 4, we conclude that
p
T (�̂T � �0) is asymptotically normal, with

asymptotic covariance matrix equal to A0�1


 B0

A

0�1


 .2

Proof of Proposition 2.3: From Proposition 2.2, we have

p
T (�̂T (~�; !T ; 


Q)� �0) = �A0�1


Q
1p
T

TX
t=1

s

Q

t (�0; �0; !�) + oP (1); with

s

Q

t (�0; �0; !�) = �
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�
Q
t (!

�)

"
"t(�

0)

"2t (�
0)� ht(�

0)

#
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=
1

ht(�0)

@mt

@�
(�0)"t(�

0) +
1

2h2t (�
0)

@ht

@�
(�0)�t(�

0); and

A0

Q = lim

T!1

1

T

TX
t=1

E

"
@s


Q

t

@�
0
(�0; �0; !�)

#
where

E

"
@s


Q

t

@�
0
(�0; �0; !�)

#
= E

2
64
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�
Q
t (!

�)

2
64
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
75
3
75

= E

�
1

ht(�0)

@mt

@�
(�0)

@mt

@�0
(�0) +

1

2h2t (�
0)

@ht

@�
(�0)

@ht

@�0
(�0)

�
:

The estimator �̂
Q
T is de�ned by 0 =

TX
t=1

st(�̂
Q
T ) where st(�) is de�ned

by (2.4). By Taylor expansion around �0, we get:
p
T (�̂

Q
T � �0) =

�A0�1 1p
T

TX
t=1

st(�
0) + oP (1);

where A0 is de�ned by A0 = lim
T!1

1

T

TX
t=1

E

�
@st

@�
0
(�0)

�
and

E

�
@st

@�
0
(�0)

�
= E

�
1

ht(�0)

@mt

@�
(�0)

@mt

@�0
(�0) +

1

2h2t (�
0)

@ht

@�
(�0)

@ht

@�0
(�0)

�
:

In other words, we have: s

Q

t (�0) = st(�
0) andE[

@s

Q

t

@�0
(�0)] = E[

@st

@�
(�0)];

then A0

Q = A0: Hence:p

T (�̂T (~�T ; !T ; 

Q) � �̂

Q
T ) = oP (1); that is �̂T (~�T ; !T ; 


Q) and �̂
Q
T are

asymptotically equivalent.2

Proof of Theorem 2.1: This proof is adapted from Newey (1993, page
423). Let

z


t =

�
@mt

@�
(�0);

@ht

@�
(�0)

�
�t(!

�)

2
4 "t(�

0)

�t(�
0)

3
5 and

z

�

t =

�
@mt

@�
(�0);

@ht

@�
(�0)

�
�t(�

0)�1

2
4 "t(�

0)

�t(�
0)

3
5 :

We have E[z


t z


�0

t ] = E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�t(!

�)

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>;,

and
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E[z


t z


0

t ] = E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�t(!

�)�t(�
0)�1�t(!

�)

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; :

Of course, we have A0

� = B0


� . Hence:

A0�1


 B0

A

0�1


 �A0�1


� B0

�A

0�1


�

= ( lim
T!1

1

T

TX
t=1

E[z


t z


�0

t ])�1( lim
T!1

1

T

TX
t=1

E[z


t z


0

t ])( lim
T!1

1

T

TX
t=1

E[z

�

t z

0

t ])�1

�( lim
T!1

1

T

TX
t=1

E[z

�

t z

�0

t ])�1

= ( lim
T!1

1

T

TX
t=1

E[z


t z


�0

t ])�1

(
( lim
T!1

1

T

TX
t=1

E[z


t z


0

t ])

�( lim
T!1

1

T

TX
t=1

E[z


t z


�0

t ])( lim
T!1

1

T

TX
t=1

E[z

�

t z

�0

t ])�1( lim
T!1

1

T

TX
t=1

E[z

�

t z

0

t ])

)

( lim
T!1

1

T

TX
t=1

E[z

�

t z

0

t ])

= lim
T!1

1

T

TX
t=1

E[RtR
0
t]; with

Rt = ( lim
T!1

1

T

TX
t=1

E[z


t z


�0

t ])�1

�
(
z


t � ( lim

T!1

1

T

TX
t=1

E[z


t z


�0

t ])( lim
T!1

1

T

TX
t=1

E[z

�

t z

�0

t ])�1z

�

t

)
:2

Proof of Theorem 4.1: �̂�T is conformable to the large family of esti-
mators de�ned by Proposition 2.2 with

��t (!T ) =

2
6664

â�t;T

ht(~�T )

ĉ�t;T

h
3=2
t (~�T )

ĉ�t;T

h
3=2
t (~�T )

b̂�t;T

h2t (
~�T )

3
7775 and !T = ~�T :

Hence, by Proposition 2.1 �̂�T is consistent and by Proposition 2.2, it
asymptotically normal with asymptotic covariance matrix equal to
(A�0)�1B�0(A�0)�1 with
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A0� = lim
T!1

1

T

TX
t=1

E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
��t (�

0)

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; ;

B0� = lim
T!1

1

T

TX
t=1

E

8><
>:
h
@mt

@�
(�0);

@ht

@�
(�0)

i
��t (�

0)�t(�
0)��t (�

0)

2
64

@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
75
9>=
>; :

To complete the proof, it is su�cient to show that is asymptotic covari-

ance matrix is equal to A0�1

de�ned by Theorem 2.1. We have (by (2.14)
and (2.18)): ��t (�

0) = �t(�
0): Hence A0� = A0 and B0� = B0 and then

(A0�)�1B0�(A0�)�1 = (A0)�1.2

Proof of Theorem 4.2 Let us denote by �̂JT the estimator conformable

to the weighting matrix de�ned by (�J
t (�

0))�1. By Propositions 2.1 and
2.2, we know that this estimator is consistent and asymptotically normal
with asymptotic covariance matrix equal to (AJ�0)�1BJ�0(AJ�0)�1 with

A0�J = lim
T!1

1

T

TX
t=1

E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
(�J

t (�
0))�1

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; ;

B0�J = lim
T!1

1

T

TX
t=1

E

��
@mt

@�
(�0);

@ht

@�
(�0)

�

�(�J
t (�

0))�1�t(�
0)(�J

t (�
0))�1

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; :

We have:

B0�J = lim
T!1

1

T

TX
t=1

E

�
E

��
@mt

@�
(�0);

@ht

@�
(�0)

�

�(�J
t (�

0))�1�t(�
0)(�J

t (�
0))�1

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; j Jt�1

9>>=
>>;

= lim
T!1

1

T

TX
t=1

E

��
@mt

@�
(�0);

@ht

@�
(�0)

�
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�(�J
t (�

0))�1E
�
�t(�

0) j Jt�1
	
(�J

t (�
0))�1

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>;

= lim
T!1

1

T

TX
t=1

E

��
@mt

@�
(�0);

@ht

@�
(�0)

�

�(�J
t (�

0))�1(�J
t (�

0))(�J
t (�

0))�1

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>;

= lim
T!1

1

T

TX
t=1

E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
(�J

t (�
0))�1

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; :

De�ne a weighting matrix �t(!) 2 Jt�1 and �̂T the corresponding esti-
mator. Its asymptotic covariance matrix is (A0

J )
�1B0

J (A
0
J )
�1 with

A0
J = lim

T!1

1

T

TX
t=1

E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�t(!)

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; ;

B0
J
= limT!1

1

T

TX
t=1

E

8><
>:
h
@mt

@�
(�0);

@ht

@�
(�0)

i
�t(!)�t(�

0)�t(!)

2
64

@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
75
9>=
>; :

By the same argument as for B0�J , we can prove that:

B
0
J = lim

T!1

1

T

TX
t=1

E

8>><
>>:
h
@mt

@�
(�

0
);
@ht

@�
(�

0
)

i
�t(!)�

J
t (�

0
)�t(!)

2
664

@mt

@�
0
(�

0
)

@ht

@�
0
(�

0
)

3
775
9>>=
>>; :

With these formulas, it is clear that by the same argument than in the
proof of Theorem 2.1, we can prove that

(A0
J )
�1B0

J(A
0
J )
�1 � (A0�J )�1B0�J(A0�J )�1 is positive, that is �̂JT is of

minimum asymptotic covariance matrix in the class CJ.2

Proof of Theorem 4.3: This a direct application of the Theorem 4.2
with CJ = CI�. In this case:

�I�

t (�0) = E[�t(�
0) j I�t�1]
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=

"
ht(�

0) h
3=2
t (�0)E[M3t(�

0) j I�t�1]
h
3=2
t (�0)E[M3t(�

0) j I�t�1] h2t (�
0)(3E[Kt(�

0) j I�t�1]� 1)

#

=

"
ht(�

0) h
3=2
t (�0)M3(�

0)

h
3=2
t (�0)M3(�

0) h2t (�
0)(3K(�0)� 1)

#
:2

Proof of Proposition 4.1: De�ne �c
t by

�c
t =

2
664

a

ht(�0)

c

h
3=2
t (�0)

c

h
3=2
t (�0)

b

h2t (�
0)

3
775 :

The corresponding estimator has an asymptotic covariance matrix equal
to
(A0

C)
�1B0

C(A
0
C)
�1 with

A0
C = lim

T!1

1

T

TX
t=1

E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�c
t

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; ;

B0
c = lim

T!1

1

T

TX
t=1

E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�c
t�t(�

0)�c
t

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>; :

We have, by the de�nition of �c
t and by (2.14):

�c
t�t(�

0)�c
t =2

64
a2 + 2acM3t(�

0) + c2(3Kt(�
0)� 1)

ht(�0)

ac+ (c2 + ab)M3t(�
0) + cb(3Kt(�

0) � 1)

h
3=2
t (�0)

ac+ (c2 + ab)M3t(�
0) + cb(3Kt(�

0)� 1)

h
3=2
t (�0)

c2 + 2bcM3t(�
0) + b2(3Kt(�

0)� 1)

h2t (�
0)

3
75 :

Hence

�
@mt

@�
(�0);

@ht

@�
(�0)

�
�c
t�t(�

0)�c
t

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775

=

�
@mt

@�
(�0)

@mt

@�0
(�0)

a2 + 2acM3t(�
0) + c2(3Kt(�

0)� 1)

ht(�0)

�

+

�
(
@mt

@�
(�0)

@ht

@�0
(�0)
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+
@ht

@�
(�0)

@mt

@�0
(�0))

ac+ (c2 + ab)M3t(�
0) + cb(3Kt(�

0)� 1)

h
3=2
t (�0)

#

+

�
@ht

@�
(�0)

@ht

@�0
(�0)

c2 + 2bcM3t(�
0) + b2(3Kt(�

0)� 1)

h2t (�
0)

�
:

By the orthogonality conditions of Proposition 4.1, we conclude that:

E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�c
t�t(�

0)�c
t

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>;

= E

�
@mt

@�
(�0)

@mt

@�0
(�0)

�
E

�
a2 + 2acM3t(�

0) + c2(3Kt(�
0)� 1)

ht(�0)

�

+E

�
(
@mt

@�
(�0)

@ht

@�0
(�0) +

@ht

@�
(�0)

@mt

@�0
(�0))

�

�E
"
ac+ (c2 + ab)M3t(�

0) + cb(3Kt(�
0)� 1)

h
3=2
t (�0)

#

+E

�
@ht

@�
(�0)

@ht

@�0
(�0)

�
E

�
c2 + 2bcM3t(�

0) + b2(3Kt(�
0)� 1)

h2t (�
0)

�

= E

8>><
>>:
�
@mt

@�
(�0);

@ht

@�
(�0)

�
�c
t�

c
t(�

0)�c
t

2
664
@mt

@�
0
(�0)

@ht

@�
0
(�0)

3
775
9>>=
>>;, where

�c
t(�

0) =

2
6664

1

ht(�0)

M3(�
0)

h
3=2
t (�0)

M3(�
0)

h
3=2
t (�0)

(3K(�0)� 1)

h2t (�
0)

3
7775 :

With this formulas, and by an argument similar to the proof of Theorem
2.1 (or Theorem 4.3), we complete the proof.2

Proof of Theorem 4.4: The estimators �̂1T and �̂2T are respectively
de�ned by:
TX
t=1

@�0

@�
(�̂1T ;

~�T )�t;T (~�T )�(�̂
1
T ;

~�T ) = 0 and

TX
t=1

@�0

@�
(~�T ; ~�T )�t;T (~�T )[�(~�T ; ~�T ) +

@�

@�0
(~�T ; ~�T )(�̂

2
T � ~�T )] = 0:

For sake of notational simplicity, we replace �t;T (~�) by �t(�
0) without

changing the asymptotic probability distributions of �̂1T and �̂2T (see e.g.
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Proposition 2.2). Then, with a Taylor expansion around (�0; �0) (of the

two functions at the points (�̂1T ;
~�T ) and (�̂

2
T ;

~�T )), and sinceE[�t(�
0; �0) j

It�1] = 0 we get for �̂1T :

1p
T

TX
t=1

@�0

@�
(�0; �0)�t(�

0)�(�0; �0)

+
1

T

TX
t=1

@�0

@�
(�0; �0)�t(�

0)
@�

@�0
(�0; �0)

p
T (�̂1T � �0)

+
1

T

TX
t=1

@�0

@�
(�0; �0)�t(�

0)
@�

@�0
(�0; �0)

p
T (~�T � �0) = oP (1)

where
@�t

@�0
denotes the jacobian matrix of �t with respect to its second

occurrence, and for �̂2T :

1p
T

TX
t=1

@�0

@�
(�0; �0)�t(�

0)[�(�0; �0) +
@�

@�0
(�0; �0)(�0 � �0)]

+
1

T

TX
t=1

@�0

@�
(�0; �0)�t(�

0)
@�

@�0
(�0; �0)

p
T (�̂2T � �0)

+
1

T

TX
t=1

@�0

@�
(�0; �0)�t(�

0)

�
@�

@�0
(�0; �0) +

@�

@�0
(�0; �0)� @�

@�0
(�0; �0)

�

�
p
T (~�T � �0) = oP (1): Hencep

T (�̂1T � �0) = �(A0
1)
�1

�
(

1p
T

TX
t=1

@�0

@�
(�0; �0)�t(�

0)�(�0; �0) + ~A0
p
T (~�T � �0)

)
+ oP (1),

p
T (�̂2T � �0) = �(A0

1)
�1

�
(

1p
T

TX
t=1

@�0

@�
(�0; �0)�t(�

0)�(�0; �0) + ~A0
p
T (~�T � �0)

)
+ oP (1),

with A0
1 = lim

T!1

1

T

TX
t=1

E

�
@�0

@�
(�0; �0)�t(�

0)
@�

@�0
(�0; �0)

�
and

~A0 = lim
T!1

1

T

TX
t=1

E

�
@�0

@�
(�0; �0)�t(�

0)
@�

@�0
(�0; �0)

�
:

We conclude that:
p
T (�̂2T � �̂1T ) = oP (1), that is �̂

2
T and �̂1T are asymp-

totically equivalent.2
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Table 1: Gaussian errors

a

(OLS)

b

(QMLE)

C1

(Initial

OLS)

C2

(Initial

QMLE)

C3

(Iterated

OLS)

C4

(Iterated

QMLE)

c
1:022

(0:129)

1:015

(0:077)

1:014

(0:078)

1:015

(0:076)

1:014

(0:076)

1:014

(0:076)

�
0:694

(0:038)

0:696

(0:022)

0:696

(0:023)

0:696

(0:022)

0:696

(0:22)

0:696

(0:022)

!
0:576

(0:090)

0:502

(0:035)

0:506

(0:037)

0:502

(0:035)

0:502

(0:035)

0:501

(0:035)

�
0:416

(0:106)

0:496

(0:063)

0:484

(0:068)

0:488

(0:067)

0:496

(0:063)

0:496

(0:063)

Table 2: Student errors

a

(OLS)

b

(QMLE)

C1

(Initial

OLS)

C2

(Initial

QMLE)

C3

(Iterated

OLS)

C4

(Iterated

QMLE)

c
1:021

(0:157)

1:016

(0:096)

1:014

(0:092)

1:016

(0:086)

1:015

(0:086)

1:014

(0:086)

�
0:694

(0:046)

0:695

(0:027)

0:696

(0:026)

0:695

(0:025)

0:696

(0:025)

0:696

(0:025)

!
0:654

(0:183)

0:505

(0:059)

0:522

(0:104)

0:509

(0:060)

0:513

(0:100)

0:507

(0:060)

�
0:329

(0:124)

0:498

(0:153)

0:466

(0:127)

0:470

(0:121)

0:482

(0:121)

0:492

(0:139)

Table 3: Gamma errors

a

(OLS)

b

(QMLE)

C1

(Initial

OLS)

C2

(Initial

QMLE)

C3

(Iterated

OLS)

C4

(Iterated

QMLE)

c
1:056

(0:145)

1:011

(0:106)

1:013

(0:075)

1:011

(0:066)

1:001

(0:066)

1:001

(0:065)

�
0:682

(0:046)

0:696

(0:031)

0:696

(0:022)

0:696

(0:019)

0:697

(0:019)

0:697

(0:018)

!
0:711

(0:443)

0:499

(0:060)

0:509

(0:062)

0:501

(0:052)

0:503

(0:052)

0:502

(0:052)

�
0:279

(0:120)

0:502

(0:145)

0:480

(0:130)

0:474

(0:108)

0:494

(0:103)

0:495

(0:102)
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