Finite-Sample Diagnostics for Multivariate Regressions with Applications to Linear Asset Pricing Models
Dans cet article, nous proposons plusieurs tests de spécification valides pour des échantillons finis dans le cadre de régression linéaires multivariées (RLM), avec des applications à des modèles d'évaluation d'actifs. Nous nous concentrons sur les déviations par rapport à l'hypothèse d'erreurs i.i.d. univariée ou multivariée, pour des distributions d'erreurs gaussiennes et non gaussiennes. Les tests univariés étudiés prolongent les procédures exactes existantes en permettant des paramètres non spécifiés dans la distribution des erreurs (e.g., le nombre de degrés de liberté dans le cas de la distribution de Student). Les tests multivariés sont basés sur des résidus standardisés multivariés qui assurent l'invariance par rapport aux coefficients RLM et à ceux de la matrice de covariance des erreurs. Nous considérons des tests contre la dépendance sérielle, contre la présence d'effets GARCH multivariés et des tests de signes contre l'asymétrie. Les procédures proposées sont des versions exactes des tests de Shanken (1990) qui consistent à combiner des tests de spécification univariés. Spécifiquement, nous combinons des tests entre équations en utilisant une approche de test de Monte Carlo (MC), ce qui permet d'éviter des bornes de type Bonferroni. Étant donné que les tests dans un contexte non gaussien ne sont pas pivotaux, nous appliquons une approche de test de Monte Carlo maximisé [Dufour (2002)] où la valeur p simulée pour l'hypothèse testée (qui dépend de paramètres de nuisance) est maximisée (par rapport aux dits paramètres de nuisance) dans le but de contrôler le niveau des tests. Nous appliquons les tests proposés à un modèle d'évaluation d'actifs qui comprend un taux d'intérêt sans risque observable et utilise les rendements de portefeuilles mensuels de titres inscrits à la bourse de New York, sur des sous-périodes de cinq ans allant de janvier 1926 à décembre 1995. Nos résultats révèlent que les tests univariés exacts présentent des problèmes de dépendance sérielle, d'asymétrie et d'effets GARCH statistiquement significatifs dans certaines équations. Cependant ces problèmes s'avèrent moins importants, lorsque l'on tient compte de la dépendance entre équations. De plus, les écarts importants par rapport à l'hypothèse i.i.d. sont moins évidents une fois que l'on considère des erreurs non gaussiennes.
[ - ]